Arginolytic and ureolytic activities of pure cultures of human oral bacteria and their effects on the pH response of salivary sediment and dental plaque in vitro

1989 ◽  
Vol 34 (1) ◽  
pp. 43-53 ◽  
Author(s):  
R.L. Wijeyeweera ◽  
I. Kleinberg
2015 ◽  
Vol 81 (16) ◽  
pp. 5471-5476 ◽  
Author(s):  
Taichi Inui ◽  
Lauren C. Walker ◽  
Michael W. J. Dodds ◽  
A. Bryan Hanley

ABSTRACTCarbohydrate availability shifts when bacteria attach to a surface and form biofilm. When salivary planktonic bacteria form an oral biofilm, a variety of polysaccharides and glycoproteins are the primary carbon sources; however, simple sugar availabilities are limited due to low diffusion from saliva to biofilm. We hypothesized that bacterial glycoside hydrolase (GH) activities would be higher in a biofilm than in saliva in order to maintain metabolism in a low-sugar, high-glycoprotein environment. Salivary bacteria from 13 healthy individuals were used to growin vitrobiofilm using two separate media, one with sucrose and the other limiting carbon sources to a complex carbohydrate. All six GHs measured were higherin vitrowhen grown in the medium with complex carbohydrate as the sole carbon source. We then collected saliva and overnight dental plaque samples from the same individuals and measuredex vivoactivities for the same six enzymes to determine how oral microbial utilization of glycoconjugates shifts between the planktonic phase in saliva and the biofilm phase in overnight dental plaque. Overall higher GH activities were observed in plaque samples, in agreement within vitroobservation. A similar pattern was observed in GH activity profiles betweenin vitroandex vivodata. 16S rRNA gene analysis showed that plaque samples had a higher abundance of microorganisms with larger number of GH gene sequences. These results suggest differences in sugar catabolism between the oral bacteria located in the biofilm and those in saliva.


Author(s):  
Katherine A. Overmyer ◽  
Timothy W. Rhoads ◽  
Anna E Merrill ◽  
Zhan Ye ◽  
Michael S. Westphall ◽  
...  

AbstractOral microbiome influences human health, specifically pre- and type 2 diabetes (Pre-DM/DM) and periodontal diseases (PD), through complex microbial interactions. To explore these relations, we performed 16S rDNA sequencing, metabolomics, lipidomics, and proteomics analyses on supragingival dental plaque collected from individuals with Pre-DM/DM (n=39), Pre-DM/DM and PD (n=37), PD alone (n=11), or neither (n=10). We identified on average 2,790 operational taxonomic units and 2,025 microbial and host proteins per sample and quantified 110 metabolites and 415 lipids. Plaque samples from Pre-DM/DM patients contained higher abundance of Fusobacterium and Tannerella vs. plaques from metabolically healthy. Phosphatidylcholines, plasmenyl-phosphatidylcholines, ceramides containing non-OH fatty acids, and host proteins related to actin filament rearrangement were elevated in plaques from PD vs. non-PD. Cross-omic correlation analysis enabled the detection of a strong association between Lautropia and mono-methyl phophospotidlyethanolamine (PE-NMe), striking because synthesis of PE-NMe is uncommon in oral bacteria. Lipidomics analysis of in vitro cultures of Lautropia mirabilis confirmed the bacteria’s synthesis of PE-NMe. This comprehensive analysis revealed a novel microbial metabolic pathway and significant associations of host-derived proteins with PD.


1983 ◽  
Vol 28 (8) ◽  
pp. 723-727 ◽  
Author(s):  
Vivien M. Adshead ◽  
Judith M. Parke ◽  
P.J. Chambers ◽  
R.M. Davies ◽  
J.A. Cole

Author(s):  
Mercedes Fernandez y Mostajo ◽  
Wil A. van der Reijden ◽  
Mark J. Buijs ◽  
Wouter Beertsen ◽  
Fridus van der Weijden ◽  
...  

2016 ◽  
Vol 96 (2) ◽  
pp. 208-216 ◽  
Author(s):  
N. Rostami ◽  
R.C. Shields ◽  
S.A. Yassin ◽  
A.R. Hawkins ◽  
L. Bowen ◽  
...  

Extracellular DNA (eDNA) has been identified in the matrix of many different monospecies biofilms in vitro, including some of those produced by oral bacteria. In many cases, eDNA stabilizes the structure of monospecies biofilms. Here, the authors aimed to determine whether eDNA is an important component of natural, mixed-species oral biofilms, such as plaque on natural teeth or dental implants. To visualize eDNA in oral biofilms, approaches for fluorescently stained eDNA with either anti-DNA antibodies or an ultrasensitive cell-impermeant dye, YOYO-1, were first developed using Enterococcus faecalis, an organism that has previously been shown to produce extensive eDNA structures within biofilms. Oral biofilms were modelled as in vitro “microcosms” on glass coverslips inoculated with the natural microbial population of human saliva and cultured statically in artificial saliva medium. Using antibodies and YOYO-1, eDNA was found to be distributed throughout microcosm biofilms, and was particularly abundant in the immediate vicinity of cells. Similar arrangements of eDNA were detected in biofilms on crowns and overdenture abutments of dental implants that had been recovered from patients during the restorative phase of treatment, and in subgingival dental plaque of periodontitis patients, indicating that eDNA is a common component of natural oral biofilms. In model oral biofilms, treatment with a DNA-degrading enzyme, NucB from Bacillus licheniformis, strongly inhibited the accumulation of biofilms. The bacterial species diversity was significantly reduced by treatment with NucB and particularly strong reductions were observed in the abundance of anaerobic, proteolytic bacteria such as Peptostreptococcus, Porphyromonas and Prevotella. Preformed biofilms were not significantly reduced by NucB treatment, indicating that eDNA is more important or more exposed during the early stages of biofilm formation. Overall, these data demonstrate that dental plaque eDNA is potentially an important target for oral biofilm control.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kajsa Roslund ◽  
Markku Lehto ◽  
Pirkko Pussinen ◽  
Kari Hartonen ◽  
Per-Henrik Groop ◽  
...  

AbstractWe have measured the volatile fingerprints of four pathogenic oral bacteria connected to periodontal disease and dental abscess: Porphyromonas gingivalis (three separate strains), Prevotella intermedia, Prevotella nigrescens and Tannerella forsythia. Volatile fingerprints were measured in vitro from the headspace gas of the bacteria cultured on agar. Concrete identification of new and previously reported bacterial volatiles were performed by a combination of solid phase microextraction (SPME) and offline gas chromatography–mass spectrometry (GC–MS). We also studied the effect of the reduced electric field strength (E/N) on the fragmentation patterns of bacterial volatiles in online proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS). We aimed to discover possible new biomarkers for the studied oral bacteria, as well as to validate the combination of GC–MS and PTR-MS for volatile analysis. Some of the most promising compounds produced include: 1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ), indole, and a cascade of sulphur compounds, such as methanethiol, dimethyl disulphide (DMDS) and dimethyl trisulphide (DMTS). We also found that several compounds, especially alcohols, aldehydes and esters, fragment significantly with the PTR-MS method, when high E/N values are used. We conclude that the studied oral bacteria can be separated by their volatile fingerprints in vitro, which could have importance in clinical and laboratory environments. In addition, using softer ionization conditions can improve the performance of the PTR-MS method in the volatile analysis of certain compounds.


2021 ◽  
Vol 9 (2) ◽  
pp. 450
Author(s):  
Maigualida Cuenca ◽  
María Carmen Sánchez ◽  
Pedro Diz ◽  
Lucía Martínez-Lamas ◽  
Maximiliano Álvarez ◽  
...  

The aim of this study was to evaluate the potential anti-biofilm and antibacterial activities of Streptococcus downii sp. nov. To test anti-biofilm properties, Streptococcus mutans, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans were grown in a biofilm model in the presence or not of S. downii sp. nov. for up to 120 h. For the potential antibacterial activity, 24 h-biofilms were exposed to S. downii sp. nov for 24 and 48 h. Biofilms structures and bacterial viability were studied by microscopy, and the effect in bacterial load by quantitative polymerase chain reaction. A generalized linear model was constructed, and results were considered as statistically significant at p < 0.05. The presence of S. downii sp. nov. during biofilm development did not affect the structure of the community, but an anti-biofilm effect against S. mutans was observed (p < 0.001, after 96 and 120 h). For antibacterial activity, after 24 h of exposure to S. downii sp. nov., counts of S. mutans (p = 0.019) and A. actinomycetemcomitans (p = 0.020) were significantly reduced in well-structured biofilms. Although moderate, anti-biofilm and antibacterial activities of S. downii sp. nov. against oral bacteria, including some periodontal pathogens, were demonstrated in an in vitro biofilm model.


Sign in / Sign up

Export Citation Format

Share Document