Saliva-mediated binding in vitro and prevalence in vivo of streptococcus mutans

1996 ◽  
Vol 41 (1) ◽  
pp. 35-39 ◽  
Author(s):  
A. Carle´n ◽  
J. Olsson ◽  
A.-C. Bo¨rjesson
Keyword(s):  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fatemeh Ostadhossein ◽  
Parikshit Moitra ◽  
Esra Altun ◽  
Debapriya Dutta ◽  
Dinabandhu Sar ◽  
...  

AbstractDental plaques are biofilms that cause dental caries by demineralization with acidogenic bacteria. These bacteria reside inside a protective sheath which makes any curative treatment challenging. We propose an antibiotic-free strategy to disrupt the biofilm by engineered clustered carbon dot nanoparticles that function in the acidic environment of the biofilms. In vitro and ex vivo studies on the mature biofilms of Streptococcus mutans revealed >90% biofilm inhibition associated with the contact-mediated interaction of nanoparticles with the bacterial membrane, excessive reactive oxygen species generation, and DNA fragmentation. An in vivo examination showed that these nanoparticles could effectively suppress the growth of S. mutans. Importantly, 16S rRNA analysis of the dental microbiota showed that the diversity and richness of bacterial species did not substantially change with nanoparticle treatment. Overall, this study presents a safe and effective approach to decrease the dental biofilm formation without disrupting the ecological balance of the oral cavity.


2015 ◽  
Vol 100 (4) ◽  
pp. 1901-1914 ◽  
Author(s):  
Shatavari Kulshrestha ◽  
Shakir Khan ◽  
Sadaf Hasan ◽  
M. Ehtisham Khan ◽  
Lama Misba ◽  
...  

2008 ◽  
Vol 21 (4) ◽  
pp. 993-997 ◽  
Author(s):  
G. Pasquantonio ◽  
C. Greco ◽  
M. Prenna ◽  
C. Ripa ◽  
L.A. Vitali ◽  
...  

Streptococcus mutans is the major cause of dental plaque and is often associated with biofilm formation. The aim of this study is to evaluate the activity of a hydrosoluble derivative of chitosan against S. mutans biofilms in vitro and in vivo. Strains of S. mutans were isolated from the dental plaque of 84 patients enrolled in the study. The antibacterial activity of chitosan was determined by broth microdilutions. The effect of chitosan at different concentrations and exposure times on S. mutans biofilms at different phases of development was assessed by a clinical study using the classical “4-day plaque regrowth” experiment in adult volunteers. The MIC values of chitosan were between 0.5 and 2 g/L. Compared to distilled water, the chitosan solution significantly decreased the vitality of plaque microflora (p≤0.05). Chlorhexidine, used as a positive control, reduced vitality even further. The results showed that S. mutans in the adhesion phase (4 h) was completely inhibited by chitosan at any concentration (0.1, 0.2, 0.5XMIC) or exposure time investigated (1, 15, 30, 60 min), while S. mutans at successive stages of accumulation (12–24 h) was inhibited only by higher concentrations and longer exposure times. These data confirm the effective action of chitosan against S. mutans biofilms.


2014 ◽  
Vol 82 (5) ◽  
pp. 1968-1981 ◽  
Author(s):  
Megan L. Falsetta ◽  
Marlise I. Klein ◽  
Punsiri M. Colonne ◽  
Kathleen Scott-Anne ◽  
Stacy Gregoire ◽  
...  

ABSTRACTStreptococcus mutansis often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC).S. mutansmay not act alone;Candida albicanscells are frequently detected along with heavy infection byS. mutansin plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhancedin vitroandin vivo. The presence ofC. albicansaugments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viableS. mutanscells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeableS. mutansmicrocolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Ourin vitrodata also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence withC. albicansinduces the expression of virulence genes inS. mutans(e.g.,gtfB,fabM). We also found thatCandida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease.


2011 ◽  
Vol 18 (9) ◽  
pp. 1552-1561 ◽  
Author(s):  
Tomonori Hoshino ◽  
Yoshio Kondo ◽  
Kan Saito ◽  
Yutaka Terao ◽  
Nobuo Okahashi ◽  
...  

ABSTRACTIn the development of a component vaccine against caries, the catalytic region (CAT) and glucan-binding domain (GBD) of glucosyltransferase B (GtfB) fromStreptococcus mutanshave been employed as target antigens. These regions were adopted as primary targets because they theoretically include epitopes associated with enzyme function. However, their antigenicities have not been fully evaluated. Although there are many reports about successful vaccination using these components, the principle has not yet been put to practical use. For these reasons, we came to doubt the effectiveness of the epitopes in vaccine production and reevaluated the antigenic region of GtfB by usingin silicoanalyses combined within vitroandin vivoexperiments. The results suggested that the ca. 360-amino-acid variable region (VR) in the N terminus of GtfB is more reactive than CAT and GBD. This region isS. mutansand/or GtfB specific, nonconserved among other streptococcal Gtfs, and of unknown function. Immunization using an adenovirus vector-borne DNA vaccine confirmed that VR is an epitope that shows promise for the development of a caries vaccine.


1986 ◽  
Vol 65 (12) ◽  
pp. 1392-1401 ◽  
Author(s):  
R.A. Burne ◽  
B. Rubinfeld ◽  
W.H. Bowen ◽  
R.E. Yasbin

A genetic library consisting of over 5000 clones with an average insert size of 6.9 kilobasepairs (kbp) of Streptococcus mutans GS-5 has been constructed in a bivalent plasmid vector pMK3, which is capable of replicating in Escherichia coli and Bacillus subtilis. The recombinant plasmid pSUCRI, containing a 6.0 kbp fragment of S. mutans GS-5 DNA, was the focus of this study. Using Southern hybridization, in vitro and in vivo gene expression techniques, and biochemical analysis, this clone was shown to encode the 55 kiloDalton (kDal) GS-5 gtfA gene product, as well as a 38 and a 66 kDal polypeptide. In addition to the gtfA gene, pSUCRI encodes a dextranase activity with specificity for α(1→6)-linked glucans, and with no detectable activity on mutan. The dextranase enzyme had an apparent molecular weight of 66 kDal as demonstrated by SDS-PAGE analysis of the proteins produced by a dextranase-negative deletion derivative. The pH optimum of the enzyme was approximately 6.0, and there was no detectable activity below pH 5.0. By subcloning various combinations of DNA fragments from pSUCRI, it was demonstrated that the dextranase gene (designated dexB) can be separated from the gtfA gene and still be efficiently expressed in both E. coli and B. subtilis. The dexB gene contained its own promoter and ribosome-binding site. The genetic linkage of the gtfA and dexB genes in the S. mutans GS-5 chromosome was confirmed by Southern hybridization and by the independent isolation of four distinct clones containing the gtfA gene and common flanking sequences. In addition to a glucosyltransferase and dextranase, an invertase-like activity is also encoded on pSUCRI, indicating that there is a cluster of genes on the S. mutans GS-5 chromosome which is devoted to the dissimilation of sucrose and concomitant synthesis or modification of glucans into a water-insoluble form, perhaps constituting an operon for glucan modification which can be coordinately regulated in response to environmental alterations.


Phytomedicine ◽  
2012 ◽  
Vol 19 (8-9) ◽  
pp. 747-755 ◽  
Author(s):  
Rosina Khan ◽  
Mohd Adil ◽  
Mohd Danishuddin ◽  
Praveen K. Verma ◽  
Asad U. Khan

2021 ◽  
Vol 12 ◽  
Author(s):  
Arumugam Priya ◽  
Anthonymuthu Selvaraj ◽  
Dass Divya ◽  
Ramalingam Karthik Raja ◽  
Shunmugiah Karutha Pandian

Early childhood caries (ECC), a severe form of caries due to cross-kingdom interaction of Candida albicans and Streptococcus mutans, is a serious childhood dental disease that affects majority of the children with poor background. The present study investigated the anti-infective potential of thymol against C. albicans and S. mutans dual species for the management of ECC. Thymol, a plant derivative of the monoterpene group, has been well known for its numerous biological activities. Thymol at 300 μg/ml concentration completely arrested growth and proliferation of dual species of C. albicans and S. mutans. Rapid killing efficacy of pathogens, within a span of 2 min, was observed in the time kill assay. In addition, at sub-inhibitory concentrations, thymol effectively diminished the biofilm formation and virulence of both C. albicans and S. mutans such as yeast-to-hyphal transition, hyphal-to-yeast transition, filamentation, and acidogenicity and acidurity, respectively, in single and dual species state. qPCR analysis was consistent with virulence assays. Also, through the invertebrate model system Galleria mellonella, in vivo toxicity and efficacy of the phytocompound was assessed, and it was found that no significant toxic effect was observed. Moreover, thymol was found to be proficient in diminishing the infection under single and dual state in in vivo condition. Overall, the results from the present study illustrate the anti-infective potential of thymol against the ECC-causing dual species, C. albicans and S. mutans, and the applicability of thymol in medicated dentifrice formulation.


Sign in / Sign up

Export Citation Format

Share Document