Turbulent schmidt number for diffusion models in the neutral boundary layer

1983 ◽  
Vol 17 (12) ◽  
pp. 2638
Author(s):  
A.G. Robins
2019 ◽  
Vol 17 (05) ◽  
pp. 1940011
Author(s):  
George Xu ◽  
Arthur Lim ◽  
Harish Gopalan ◽  
Jing Lou ◽  
Hee Joo Poh

Pollutant control is one of the key concerns in the design of buildings, for the sake of occupational health, safety and environment sustainability. In particular, risk analyses related to emergency leakage of chemicals from storage tanks or chemical processes have aroused increasing attentions in recent days, as well as the effectiveness of mitigation measures in order to eliminate, reduce and control the risks. In this paper, a CFD methodology with nonreactive chemical gases treated as passive scalars has been developed to simulate the gas dispersion across urban environments, subject to atmospheric boundary layer wind conditions. Special treatments to maintain the consistency in atmospheric boundary layer flow profiles, turbulence modeling and boundary conditions have also been accounted for. The proposed CFD methodology for gas dispersion has been implemented in the open source CFD code — OpenFOAM. It has been validated by modeling the gas dispersions for two urban-related test cases: the CODASC street canyon test case measured in a laboratory wind tunnel and the Mock Urban Setting Test (MUST) field experiment conducted in the desert area of Utah State. Effects of turbulent Schmidt number (Sct have been primarily addressed in this study. Statistical analyses about the discrepancies between predicted and experimental data have been carried out and statistical performance measures are used to quantify the accuracy of the proposed methodology. Simulations results from passive scalar transport equation demonstrate good agreement with experimental data, though tracer gases heavier than the atmospheric air were used in both the measurements. Furthermore, sensitivity tests also indicate that the accuracy of the simulation results is sensitive to the value of turbulent Schmidt number.


2020 ◽  
Vol 9 (4) ◽  
pp. 375-387
Author(s):  
Amit Parmar ◽  
Rakesh Choudhary ◽  
Krishna Agarwal

The present study shows the impacts of Williamson fluid with magnetohydrodynamics flow containing gyrotactic microorganisms under the variable fluid property past permeable stretching sheet. Variable Prandtl number, mass Schmidt number, and gyrotactic microorganisms Schmidt number were all considered. The momentum, energy, mass, and microorganism equations’ governing PDEs are converted into nonlinear coupled ODEs and numerically solved with the bvp4c solver using suitable transformations. The main outcome of this study is that Williamson fluid parameter constantly decreases in velocity profile, however reverse effects can be shown in temperature profile. Also, M parameter and Kp parameter enhance the heat transfer rate, concentration rate and microorganisms boundary layer thickness but declines in momentum boundary layer thickness and velocity profile. The aim of this research is to see how velocity slide, temperature jump, concentration slip, and microorganism slip affect MHD Williamson fluid flow with gyrotactic microorganisms over a leaky surface embedded in spongy medium, with non-linear radiation and non-linear chemical reaction.


Author(s):  
Shan Li ◽  
Shanshan Zhang ◽  
Lingyun Hou ◽  
Zhuyin Ren

Modern gas turbines in power systems employ lean premixed combustion to lower flame temperature and thus achieve low NOx emissions. The fuel/air mixing process and its impacts on emissions are of paramount importance to combustor performance. In this study, the mixing process in a methane-fired model combustor was studied through an integrated experimental and numerical study. The experimental results show that at the dump location, the time-averaged fuel/air unmixedness is less than 10% over a wide range of testing conditions, demonstrating the good mixing performance of the specific premixer on the time-averaged level. A study of the effects of turbulent Schmidt number on the unmixedness prediction shows that for the complex flow field involved, it is challenging for Reynolds-Averaged Navier-Stokes (RANS) simulations with constant turbulent Schmidt number to accurately predict the mixing process throughout the combustor. Further analysis reveals that the production and scalar dissipation are the key physical processes controlling the fuel/air mixing. Finally, the NOx formation in this model combustor was analyzed and modelled through a flamelet-based approach, in which NOx formation is characterized through flame-front NOx and its post-flame formation rate obtained from one-dimensional laminar premixed flames. The effect of fuel/air unmixedness on NOx formation is accounted for through the presumed probability density functions (PDF) of mixture fraction. Results show that the measured NOx in the model combustor are bounded by the model predictions with the fuel/air unmixedness being 3% and 5% of the maximum unmixedness. In the context of RANS, the accuracy in NOx prediction depends on the unmixedness prediction which is sensitive to turbulent Schmidt number.


2007 ◽  
Vol 13 (3) ◽  
pp. 167-168 ◽  
Author(s):  
Aleksandar Dudukovic ◽  
Rada Pjanovic

The scope of this paper is to explain effect of eddy viscosity and turbulent Schmidt number on mass transfer rate. New, theoretically based correlation for gas-liquid mass transfer coefficients are proposed.


1977 ◽  
Vol 99 (2) ◽  
pp. 301-308
Author(s):  
C. J. Scott ◽  
D. R. Rask

Two-dimensional, free, turbulent mixing between a uniform stream and a cavity flow is investigated experimentally in a plug nozzle, a geometry that generates idealized mixing layer conditions. Upstream viscous layer effects are minimized through the use of a sharp-expansion plug nozzle. Experimental velocity profiles exhibit close agreement with both similarity analyses and with error function predictions. Refrigerant-12 was injected into the cavity and concentration profiles were obtained using a gas chromatograph. Spreading factors for momentum and mass were determined. Two methods are presented to determine the average turbulent Schmidt number. The relation Sct = Sc is suggested by the data for Sc < 2.0.


Sign in / Sign up

Export Citation Format

Share Document