The transmembrane electrical potential in intact bacteria: Simultaneous measurements of carotenoid absorbance changes and lipophilic cation distribution in intact cells of Rhodobacter sphaeroides

1988 ◽  
Vol 932 ◽  
pp. 17-25 ◽  
Author(s):  
Wim Crielaard ◽  
Nick P.J Cotton ◽  
J.Baz Jackson ◽  
Klaas J Hellingwerf ◽  
Wil N Konings
2001 ◽  
Vol 355 (1) ◽  
pp. 231-235 ◽  
Author(s):  
Brigitte SIBILLE ◽  
Céline FILIPPI ◽  
Marie-Astrid PIQUET ◽  
Pascale LECLERCQ ◽  
Eric FONTAINE ◽  
...  

In isolated mitochondria the consequences of oxidative phosphorylation uncoupling are well defined, whereas in intact cells various effects have been described. Uncoupling liver cells with 2,4-dinitrophenol (DNP) in the presence of dihydroxyacetone (DHA) and ethanol results in a marked decrease in mitochondrial transmembrane electrical potential (∆ψ), ATP/ADP ratios and gluconeogenesis (as an ATP-utilizing process), whereas the increased oxidation rate is limited and transient. Conversely, when DHA is associated with octanoate or proline, DNP addition results in a very large and sustained increase in oxidation rate, whereas the decreases in ∆ψ, ATP/ADP ratios and gluconeogenesis are significantly less when compared with DHA and ethanol. Hence significant energy wastage (high oxidation rate) by uncoupling is achieved only with substrates that are directly oxidized in the mitochondrial matrix. Conversely in the presence of substrates that are first oxidized in the cytosol, uncoupling results in a profound decrease in mitochondrial ∆ψ and ATP synthesis, whereas energy wastage is very limited.


Author(s):  
Leslie M. Loew ◽  
Richard A. Tuft ◽  
Walter Carrington ◽  
Fredric S. Fay

The energy released during the oxidation reactions in the mitochondrial respiratory chain is stored as an electrochemical potential consisting of a transmembrane electrical potential (Vmit) of about −180 mV and a proton gradient of about 1 pH unit; this drives the synthesis of the ATP required to fuel the cell’s energy-dependent processes. This key cellular system has been the subject of thousands of studies. However, data on how it is regulated by the physiological state of the cell has only been gathered via indirect studies on isolated mitochondrial suspensions; quantitative studies on individual mitochondria in situ have been precluded by their small size, their high motility, and the absence of appropriate methodologies.An approach toward a more quantitative assessment of Vmit within intact cells was based on the development of the potentiometric fluorescent dyes TMRE and TMRM, which rapidly equilibrate across membranes in accord with the Nernst equation.


1991 ◽  
Vol 261 (4) ◽  
pp. F663-F669 ◽  
Author(s):  
R. Beliveau ◽  
J. Strevey

The effect of a transmembrane electrical potential on phosphate transport by kidney brush-border membrane vesicles was studied. The initial rate of Na(+)-dependent phosphate influx was twice as high as that of efflux. Generation of a negative transmembrane potential had a stimulatory effect on the rate of influx but had no effect on efflux. The Na+ saturation curve for phosphate influx was sigmoidal, and the Hill coefficients were similar, in the presence and absence of a transmembrane potential. The membrane potential increased both the affinity for phosphate and the maximal velocity (Vmax) of the transporter. In the absence of a Na+ gradient, the stimulation by the potential was 1.78-fold. When a proton gradient (in greater than out) was the driving force, the electrical potential stimulated phosphate transport 1.71-fold. Internal Na+ (trans) inhibited phosphate influx whether a potential was present or not. Internal phosphate (trans) stimulated phosphate influx in the absence of a potential but not in its presence. These results indicate that the electrical potential is an important driving force for the Na(+)-phosphate carrier and that the translocation of the carrier is a potential-dependent step.


1990 ◽  
Vol 259 (5) ◽  
pp. F758-F767
Author(s):  
G. A. Ahearn ◽  
P. Franco

Na uptake by short-circuited epithelial brush-border membrane vesicles of Atlantic lobster (Homarus americanus) antennal gland labyrinth was Cl independent, amiloride sensitive, and stimulated by a transmembrane H+ gradient [( H]i greater than [H]o; i is internal, o is external). Na influx (2.5-s uptake) was a sigmoidal function of [Na]o (25-400 mM) when pHi = 5.0 and pHo = 8.0 and followed the Hill equation for binding cooperatively [apparent maximal influx (Jmax) = 271 nmol.mg protein-1.s-1, apparent affinity constant for Na (KNa) = 310 mM Na, and Hill coefficient (n) = 2.41]. Amiloride acted as a competitive inhibitor of Na binding to two external sites with markedly dissimilar apparent amiloride affinities (Ki1 = 14 microM; Ki2 = 1,340 mM). Electrogenic Na-H antiport by these vesicles was demonstrated by equilibrium-shift experiments in which an imposed transmembrane electrical potential difference was the only driving force for exchange. A transport stoichiometry of 2 Na to 1 H was demonstrated with the static-head technique in which a balance of driving forces was attained with 10:1 Na gradient and 100:1 H gradient. External Ca, like amiloride, was a strong competitive inhibitor of Na-H exchange, acting at two sites on the outer vesicular face with markedly different apparent divalent cation affinities (Ki1 = 20 microM; Ki2 = 500 microM). Ca-H exchange by electrogenic Na-H antiporter was demonstrated in complete absence of Na by use of an outward H gradient in presence and absence of amiloride. Both external amiloride (Ki1 = 70 microM; Ki2 = 500 microM) and Na (Ki1 = 12 mM; Ki2 = 380 mM) were competitive inhibitors of Ca-H exchange. These results suggest that the electrogenic 2 Na-1 H exchanger characterized for this crustacean epithelium may also have a role in organismic Ca balance.


1989 ◽  
Vol 257 (1) ◽  
pp. R180-R188
Author(s):  
P. M. Romano ◽  
G. A. Ahearn ◽  
C. Storelli

L-[3H]glutamate uptake into eel (Anguilla anguilla) intestinal brush-border membrane vesicles (BBMV) was a sigmoidal function of extravesicular Na, suggesting that two or more cations accompanied the amino acid during transport. L-[3H]glutamate influx illustrated the following kinetic constants: apparent membrane binding affinity (Kapp) = 0.80 +/- 0.12 mM; influx velocity (Jmax) = 2.61 +/- 0.31 nmol.mg protein-1.min-1; and permeability coefficient (P) = 0.65 +/- 0.10 microliters.mg protein-1. min-1. Results from the imposition of diffusion potentials across vesicle membranes using K-valinomycin or H-carbonyl-cyanide p-chloromethoxyphenylhydrazone suggested that Na-dependent L-glutamate transport was sensitive to transmembrane electrical potential difference. Extravesicular aspartate was a competitive inhibitor of L-[3H]glutamate influx [inhibitory constant (Ki) = 0.28 +/- 0.04 mM]. Intravesicular K and extravesicular Cl ions enhanced maximal amino acid influx and transient L-glutamate accumulation against a concentration gradient (overshoot). Intravesicular K reduced the Kapp of the membrane to L-glutamate, whereas extravesicular Cl increased L-glutamate Jmax. A model for L-[3H]glutamate transport is suggested involving the cotransport of at least two Na and one L-glutamate that is activated by one intravesicular K ion and at least two extravesicular Cl ions.


1998 ◽  
Vol 274 (2) ◽  
pp. R486-R493 ◽  
Author(s):  
Sebastiano Vilella ◽  
Vincenzo Zonno ◽  
Laura Ingrosso ◽  
Tiziano Verri ◽  
Carlo Storelli

An electroneutral Na+/H+exchange mechanism (dimethylamiloride inhibitable, Li+ sensitive, and Ca2+ insensitive) was identified in brush-border membrane vesicles (BBMV) from Kuruma prawn hepatopancreas by monitoring Na+-dependent H+ fluxes with the pH-sensitive dye acridine orange and measuring22Na+uptake. Kinetic parameters measured under short-circuited conditions were the Na+ concentration that yielded one-half of the maximal dissipation rate ( F max) of the preset transmembrane ΔpH ( K Na) = 15 ± 2 mM and F max = 3,626 ± 197 Δ F ⋅ min−1 ⋅ mg protein−1, with a Hill coefficient for Na+ of ∼1. In addition, the inhibitory constant for dimethylamiloride was found to be ∼1 μM. The electroneutral nature of the antiporter was assessed in that an inside-negative transmembrane electrical potential neither affected kinetic parameters nor stimulated pH-dependent (intracellular pH > extracellular pH)22Na+uptake. In contrast, electrogenic pH-dependent22Na+uptake was observed in lobster hepatopancreatic BBMV. Substitution of chloride with gluconate resulted in increasing K Na and decreasing Δ F max, which suggests a possible role of chloride in the operational mechanism of the antiporter. These results indicate that a Na+/H+exchanger, resembling the electroneutral Na+/H+antiporter model, is present in hepatopancreatic BBMV from the Kuruma prawn Penaeus japonicus.


Sign in / Sign up

Export Citation Format

Share Document