Sodium- and calcium-dependence of threshold potential in frog skin excitation

1968 ◽  
Vol 163 (3) ◽  
pp. 424-426 ◽  
Author(s):  
B. Lindemann
Planta Medica ◽  
2013 ◽  
Vol 79 (10) ◽  
Author(s):  
RW Fitch ◽  
A Weng ◽  
RA Saporito

BIOPHYSICS ◽  
2020 ◽  
Vol 65 (5) ◽  
pp. 784-787
Author(s):  
A. V. Melnitskaya ◽  
Z. I. Krutetskaya ◽  
V. G. Antonov ◽  
N. I. Krutetskaya

1988 ◽  
Vol 53 (11) ◽  
pp. 2574-2582 ◽  
Author(s):  
Hedvig Medzihradszky-Schweiger ◽  
Helga Süli-Vargha ◽  
József Bódi ◽  
Kálmán Medzihradszky

A number of N-nitroso-2-chloroethyl-carbamoyl (Q(NO)) derivatives of α-melanotropin fragments have been synthesized and their effect on the frog skin melanocytes studied. Peptides substituted in this way possess the biological activity of the parent compounds, indicating that they preserved their receptor recognizing ability. These compounds can therefore serve as affinity labels. Some of these derivatives, related to the C-terminal sequence of α-melanotropin show prolonged darkening reaction, which does not influence the subsequent reaction of melanocytes with α-melanotropin. The Q(NO)-derivative of a fragment derived from the classical active site of the hormone shows, however, inhibition of the effect of α-melanotropin. It can be concluded that the latter peptide acts through the melanotropin receptor, while others, related to the C-terminal sequence of the hormone through another mechanism.


1993 ◽  
Vol 268 (12) ◽  
pp. 8980-8989
Author(s):  
N. Charpentier ◽  
L. Prézeau ◽  
J. Carrette ◽  
R. Bertorelli ◽  
G. Le Cam ◽  
...  

Peptides ◽  
2004 ◽  
Vol 25 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Agnes Sonnevend ◽  
Floyd C. Knoop ◽  
Mahrendra Patel ◽  
Tibor Pál ◽  
Ana Maria Soto ◽  
...  

1994 ◽  
Vol 266 (3) ◽  
pp. F367-F374 ◽  
Author(s):  
R. Rick

The pH of the isolated frog skin epithelium was determined on a cellular and subcellular level based on the distribution of a weak organic acid, 4-bromobenzoic acid. The indicator is detectable by X-ray microanalysis due to the presence of an element label. The results show that the pH of principal cells, but not the Na concentration, is closely correlated with the rate of transepithelial Na transport. Acidification leads to an inhibition of Na transport, regardless of whether the change was spontaneous or experimentally induced. Under the conditions of this study, the pH of principal cells was not well regulated. At a bath pH of 7.0, large pH differences between the cell layers were detectable. In mitochondria-rich cells, the pH was a function of the intracellular Cl concentration but not the Na transport rate. The cytoplasmic pH consistently exceeded the nuclear pH. The nuclear-cytoplasmic pH differential in principal cells amounted to 0.3 pH units, which is equivalent to a nuclear potential of -17 mV. The results support the view that the intracellular pH (pHi) is an important regulator of transepithelial Na transport. Regulation is primarily achieved at the level of the apical Na channel, making the Na influx the rate-limiting step in Na reabsorption.


1995 ◽  
Vol 269 (3) ◽  
pp. G378-G385 ◽  
Author(s):  
Z. Xiong ◽  
N. Sperelakis ◽  
A. Noffsinger ◽  
C. Fenoglio-Preiser

Voltage-gated Ca2+ currents were investigated in single smooth muscle cells freshly isolated from the circular layer of the human colon (ascending and descending portions) using the whole cell voltage-clamp technique. Tissue samples were obtained at the time of therapeutic surgery. In physiological salt solution (containing 2 mM Ca2+), an inward current was observed when the cell membrane was depolarized in the presence of tetrodotoxin. This current disappeared when Ca2+ was removed from the bath solution and was inhibited when Ca2+ channel blockers were applied, indicating that the inward current was a Ca2+ current (ICa). Changing the holding potential (HP) from -100 mV to more positive potentials (e.g., -60 and -40 mV) markedly decreased the amplitude of ICa. The voltage dependence of steady-state activation and inactivation was represented by Boltzmann distributions; there was a substantial amount of overlap (window current) between -60 and -10 mV. A fast-inactivating ICa component followed by a slow-inactivating ICa component was observed in some cells from both ascending and descending colons. The fast ICa component was observed only when cells were held at -80 or -100 mV, and had a more negative threshold potential (-70 to -60 mV). This component was sensitive to low concentrations of Ni2+ (30 microM) but was resistant to nifedipine (10-20 microM). In contrast, the slow (sustained) ICa component was observed at all HPs (-40 to -100 mV) and had a more positive threshold potential (about -40 mV). This component was insensitive to low concentration of Ni2+ but was sensitive to nifedipine and BAY K 8644.(ABSTRACT TRUNCATED AT 250 WORDS)


2005 ◽  
Vol 29 (3) ◽  
pp. 462-470 ◽  
Author(s):  
Catherine R. Borden ◽  
Charles F. Stevens ◽  
Jane M. Sullivan ◽  
Yongling Zhu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document