Ca2+ currents in human colonic smooth muscle cells

1995 ◽  
Vol 269 (3) ◽  
pp. G378-G385 ◽  
Author(s):  
Z. Xiong ◽  
N. Sperelakis ◽  
A. Noffsinger ◽  
C. Fenoglio-Preiser

Voltage-gated Ca2+ currents were investigated in single smooth muscle cells freshly isolated from the circular layer of the human colon (ascending and descending portions) using the whole cell voltage-clamp technique. Tissue samples were obtained at the time of therapeutic surgery. In physiological salt solution (containing 2 mM Ca2+), an inward current was observed when the cell membrane was depolarized in the presence of tetrodotoxin. This current disappeared when Ca2+ was removed from the bath solution and was inhibited when Ca2+ channel blockers were applied, indicating that the inward current was a Ca2+ current (ICa). Changing the holding potential (HP) from -100 mV to more positive potentials (e.g., -60 and -40 mV) markedly decreased the amplitude of ICa. The voltage dependence of steady-state activation and inactivation was represented by Boltzmann distributions; there was a substantial amount of overlap (window current) between -60 and -10 mV. A fast-inactivating ICa component followed by a slow-inactivating ICa component was observed in some cells from both ascending and descending colons. The fast ICa component was observed only when cells were held at -80 or -100 mV, and had a more negative threshold potential (-70 to -60 mV). This component was sensitive to low concentrations of Ni2+ (30 microM) but was resistant to nifedipine (10-20 microM). In contrast, the slow (sustained) ICa component was observed at all HPs (-40 to -100 mV) and had a more positive threshold potential (about -40 mV). This component was insensitive to low concentration of Ni2+ but was sensitive to nifedipine and BAY K 8644.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 263 (3) ◽  
pp. C691-C699 ◽  
Author(s):  
J. M. Post ◽  
J. R. Hume

The type of cell that serves as the pacemaker in the colon is presently unknown. This study evaluated the ionic basis of spontaneous depolarizations in circular smooth muscle cells isolated from canine colon using whole cell voltage and current clamp techniques. Increasing temperature increased the probability of observing spontaneous depolarizations, depolarized the resting membrane potential (RMP), and increased Ca2+ and K+ currents. Spontaneous depolarizations occurred as rhythmic events, in bursts, or as isolated events. Varying the holding potential from -100 to -40 mV inhibited a component of inward current thought to be necessary for spontaneous depolarizations. The Ca2+ channel blockers, nickel and nisoldipine, inhibited spontaneous depolarizations. Nickel caused a hyperpolarization, whereas nisoldipine did not affect RMP. Ouabain depolarized the RMP and inhibited spontaneous depolarizations. The K+ channel blocker, tetraethylammonium, depolarized the RMP and lengthened the duration of spontaneous depolarizations. The key finding is that single colon circular smooth muscle cells are capable of generating spontaneous depolarizations similar to those described for slow waves in intact tissues and that a temperature- and nickel-sensitive inward current is essential for spontaneous activity.



1999 ◽  
Vol 277 (6) ◽  
pp. C1284-C1290 ◽  
Author(s):  
Hamid I. Akbarali ◽  
Hemant Thatte ◽  
Xue Dao He ◽  
Wayne R. Giles ◽  
Raj K. Goyal

An inwardly rectifying K+ conductance closely resembling the human ether-a-go-go-related gene (HERG) current was identified in single smooth muscle cells of opossum esophageal circular muscle. When cells were voltage clamped at 0 mV, in isotonic K+ solution (140 mM), step hyperpolarizations to −120 mV in 10-mV increments resulted in large inward currents that activated rapidly and then declined slowly (inactivated) during the test pulse in a time- and voltage- dependent fashion. The HERG K+ channel blockers E-4031 (1 μM), cisapride (1 μM), and La3+ (100 μM) strongly inhibited these currents as did millimolar concentrations of Ba2+. Immunoflourescence staining with anti-HERG antibody in single cells resulted in punctate staining at the sarcolemma. At membrane potentials near the resting membrane potential (−50 to −70 mV), this K+ conductance did not inactivate completely. In conventional microelectrode recordings, both E-4031 and cisapride depolarized tissue strips by 10 mV and also induced phasic contractions. In combination, these results provide direct experimental evidence for expression of HERG-like K+ currents in gastrointestinal smooth muscle cells and suggest that HERG plays an important role in modulating the resting membrane potential.











1992 ◽  
Vol 70 (4) ◽  
pp. 491-500 ◽  
Author(s):  
Nicholas Sperelakis ◽  
Yoshihito Inoue ◽  
Yusuke Ohya

Smooth muscle cells normally do not possess fast Na+ channels, but inward current is carried through two types of Ca2+ channels: slow (L type) Ca2+ channels and fast (T type) Ca2+ channels. Whole-cell voltage clamp was done on single smooth muscle cells isolated from the longitudinal layer of the 18-day pregnant rat uterus. Depolarizing pulses, applied from a holding potential of −90 mV, evoked two types of inward current, fast and slow. The fast inward current decayed within 30 ms, depended on [Na]o, and was inhibited by tetrodotoxin (TTX) (K0.5 = 27 nM). The slow inward current decayed slowly, was dependent on [Ca]o (or Ba2+), and was inhibited by nifedipine. These results suggest that the fast inward current is a fast Na+ channel current and that the slow inward current is a Ca2+ slow channel current. A fast-inactivating Ca2+ channel current was not evident. We conclude that the ion channels that generate inward currents in pregnant rat uterine cells are TTX-sensitive fast Na+ channels and dihydropyridine-sensitive slow Ca2+ channels. The number of fast Na+ channels increased during gestation. The averaged current density increased from 0 on day 5, to 0.19 on day 9, to 0.56 on day 14, to 0.90 on day 18, and to 0.86 pA/pF on day 21. This almost linear increase occurs because of an increase in the fraction of cells that possess fast Na+ channels. The Ca2+ channel current density was also higher during the latter half of gestation. These results indicate that the fast Na+ channels and Ca2+ slow channels in myometrium become more numerous as term approaches, and we suggest that the fast Na+ current may be involved in spread of excitation. Isoproterenol (β-agonist) did not affect either ICa(s) or INa(f), whereas Mg2+ (K0.5 = 12 mM) and nifedipine (K0.5 = 3.3 nM) depressed ICa(s). Oxytocin had no effect on INa(f) and actually depressed ICa(s) to a small extent. Therefore, the tocolytic action of β-agonists cannot be explained by an inhibition of ICa(s), whereas that of Mg2+ can be so explained. The stimulating action of oxytocin on uterine contractions cannot be explained by a stimulation of ICa(s).Key words: sodium current, fast sodium current, calcium currents, myometrial smooth muscle cells, pregnant uterine muscle.



1995 ◽  
Vol 268 (2) ◽  
pp. H544-H549 ◽  
Author(s):  
Y. Hirakawa ◽  
T. Kuga ◽  
S. Kobayashi ◽  
H. Kanaide ◽  
A. Takeshita

The purpose of the present study was to investigate regulation of voltage-dependent Ca2+ channels by serotonin in rat aortic smooth muscle cells in primary culture. L- and T-type Ca2+ currents (ICa) were recorded using the whole cell voltage-clamp method. Without pretreatment, in 25 of 30 cells examined, 10 microM serotonin decreased L-type ICa to various extents (-14 to -72%). However, in the remaining five cells, serotonin increased L-type ICa 21 +/- 4%. Thus, in 30 cells, serotonin decreased L-type ICa an average of 22 +/- 5%. In the presence of intracellular heparin (100 micrograms/ml), a blocker of inositol 1,4,5-trisphosphate binding to its receptor, serotonin increased L-type ICa in all cells 29 +/- 3% (n = 6). When stored Ca2+ was depleted by pretreatment either with 20 microM ryanodine and 20 mM caffeine or with 100 nM A-23187, serotonin also increased L-type ICa in all cells 30 +/- 5 (n = 4) or 37 +/- 5% (n = 12), respectively. In the presence of heparin, the serotonin-induced increase of L-type ICa was prevented by 100 nM staurosporine (2 +/- 3%; n = 6, P < 0.01). The serotonin-induced decrease of L-type ICa was significantly augmented by 100 nM staurosporine (-43 +/- 10%; n = 5). Phorbol 12,13-dibutylate (PDBu; 1 microM) increased L-type ICa 29 +/- 3% (n = 6), and serotonin did not further increase L-type ICa after its potentiation by PDBu.(ABSTRACT TRUNCATED AT 250 WORDS)



1991 ◽  
Vol 260 (3) ◽  
pp. C658-C663 ◽  
Author(s):  
Y. Inoue ◽  
N. Sperelakis

The change of Na+ and Ca2+ channel currents during gestation was investigated using the whole cell voltage-clamp method on single smooth muscle cells freshly isolated from the longitudinal layer of pregnant rat uterus. The current-voltage relationships for both the Na+ and Ca2+ currents did not change during gestation. The threshold voltage, the voltage at the peak inward current, and the reversal potential (extrapolated) were virtually identical. The averaged current densities of Ca2+ channel were almost unchanged between days 9 and 21; this value at day 5 was somewhat lower. In contrast, the averaged current density of fast Na+ channels increased markedly in the myometrium during gestation: from 0 at day 5 to 0.19 +/- 0.16 at day 9, to 0.56 +/- 0.13 at day 14, to 0.90 +/- 0.13 at day 18, and to 0.86 +/- 0.14 pA/pF at day 21. This almost linear increase in the averaged density of fast Na+ channels during gestation occurs because of an increase in the fraction of cells which possessed fast Na+ channels. These results suggest that the role of fast Na+ channels in myometrial activity becomes more and more important as term approaches. We suggest that the fast Na+ current may be involved in spread of excitation.



Sign in / Sign up

Export Citation Format

Share Document