The role of nucleic acids in the sodium-retaining action of aldosterone

Author(s):  
P. De Weer ◽  
J. Crabbé
Keyword(s):  
2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 23.2-24
Author(s):  
Y. P. Tsao ◽  
F. Y. Tseng ◽  
C. W. Chao ◽  
M. H. Chen ◽  
S. T. Chen

Background:Systemic lupus erythematous (SLE) is a systemic autoimmune disease with diverse etiological factors. It was recognized that interferon (IFN) signature involved in the progress of SLE. NLRP12 (NOD-like receptor family (NLR) pyrin domain containing 12) is a pyrin containing NLR protein that we had linked its new biological function to the cross-regulation of Toll like receptor (TLRs) and Rig-I like receptor (RIG-I) pathways. NLPR12 acts as an innate immune check-point in regulating type I IFNs expression during TLRs and RIG-I activation. The importance of NLRP12 in lupus disease activity remained to be elucidated.Objectives:To clarify the role of NLRP12 in regulating the interferon signature.Methods:Peripheral blood mononuclear cells (PBMCs) were collected from SLE patients and healthy donors for analysis of NLRP12 and IFN-α gene expression by RT-QPCR. PBMCs were applied for Chromatin immuneprecipitation (ChIP) assay and electrical mobility shift assay (EMSA) to determine the putative transcription factor that regulates NLRP12 expression. An involvement of epigenetic regulation of NLRP12 expression in SLE patients was also analyzed. Bone marrow derived dendritic cells (BMDCs) were collected from wild type mouse and Nlrp12 knocked-out mice. Another CD14+ monocytes were isolated from 10 cases of lupus patients and 8 cases of healthy control, following by stimulating different type of nucleic acids, and IFN-α and IL-6 were measured with ELISA assay. CD14+ monocytes in lupus patients were also pre-treated with IFNAR2 antibody for further nucleic acid stimulation. Two mice models were applied for evaluation the role of Nlrp12: intraperitoneal injection of TMPD (2,6,10,14-tetramethylpentadecane, or pristane) in C57BL/6 mice and Faslpr mice. Both models were conducted with and without Nlrp12 knockout.Results:NLRP12 expression was significantly lower in PBMC isolated from SLE patients compared to healthy donors. The inverse correlation was observed in NLRP12 and IFNA gene expression as well as NLRP12 expression and amount of double-stranded DNA autoantibody in SLE patients. NLRP12 expression showed negative correlations with IFN-α treatment, as well as herpes simplex virus-1 (HSV-1) infection. Results from ChIP and EMSA analysis indicated a potential transcription factor 1 (TF-1) regulating NLRP12 promoter activity. TF-1 lead to transcriptional suppression of NLRP12 in SLE PBMC, and it was gradually induced after IFN treatment. Recruitment of TF-1 to NLRP12 promoter in SLE PBMC compared to the healthy PBMC was detected, and increased when treating with IFN. Human CD14+ monocytes collected from lupus and healthy control stimulating with different type of nucleic acids revealing significant increasing level of IFN-α and IL-6 in lupus patients. Among animal models, both pristine induced mice and Faslpr mice revealed increasing autoantibodies production and severity of glomerulonephritis in Nlrp12-/- group in comparison with Nlrp12+/+ ones, indicating the role of NLRP12 in maintaining positive interferon signature as well as disease activity.Conclusion:Expression level of NLRP1.2 has been demonstrated to be a biomarker of disease activity in SLE patients. The NLRP12 was involved in the interferon signature, which was also negatively regulated by TF-1. Both clinical samples and animal models revealed NLRP12 in maintaining the positive interferon signature, indicating the possible role of exacerbating factor for lupus disease activity.Disclosure of Interests:None declared


1963 ◽  
Vol 43 (3) ◽  
pp. 462-468 ◽  
Author(s):  
M. C. Shelesnyak ◽  
Liliane Tic

ABSTRACT The uteri of pseudopregnant rats show a peak of metabolic activity on the 4th and 5th day of leucocytic smear. After the administration of 20 mg of pyrathiazine Cl on the 4th day of pseudopregnancy (L4) in order to induce decidualization of the progestational endometrium, the metabolic activity of the uterus becomes intensified. The amount of synthesis, estimated by determinations of uterine weight, and amount of protein and nucleic acids, was considered as being related to an oestrogen surge occurring on the 3rd day. The present work was undertaken to confirm the relation between the oestrogen surge and the metabolic activity found in the uterus thereafter by using an antioestrogenic substance: ethanoxytriphetol (MER-25). The experiments were performed in pseudopregnant as well as in decidualizing animals. MER-25 was injected on the 3rd day of leucocytic vaginal smear of pseudopregnancy. Analyses of the uterine components 24, 48, 72, 96 h after the injection of the antioestrogen showed a definite inhibition of the synthetic processes in the uterus of the otherwise untreated pseudopregnant rat as well as in decidualizing uterus. The results, confirm the role of oestrogen surge in the processes of decidualization and the close relationship between the oestrogen surge, increase of metabolism and decidualization.


1958 ◽  
pp. 260-284
Author(s):  
ARNE ENGSTRÖM ◽  
J.B. FINEAN
Keyword(s):  

Author(s):  
Florian Puhm ◽  
Eric Boilard ◽  
Kellie R. Machlus

Extracellular vesicles (EVs) are a means of cell-to-cell communication and can facilitate the exchange of a broad array of molecules between adjacent or distant cells. Platelets are anucleate cells derived from megakaryocytes and are primarily known for their role in maintaining hemostasis and vascular integrity. Upon activation by a variety of agonists, platelets readily generate EVs, which were initially identified as procoagulant particles. However, as both platelets and their EVs are abundant in blood, the role of platelet EVs in hemostasis may be redundant. Moreover, findings have challenged the significance of platelet-derived EVs in coagulation. Looking beyond hemostasis, platelet EV cargo is incredibly diverse and can include lipids, proteins, nucleic acids, and organelles involved in numerous other biological processes. Furthermore, while platelets cannot cross tissue barriers, their EVs can enter lymph, bone marrow, and synovial fluid. This allows for the transfer of platelet-derived content to cellular recipients and organs inaccessible to platelets. This review highlights the importance of platelet-derived EVs in physiological and pathological conditions beyond hemostasis.


2020 ◽  
Vol 295 (24) ◽  
pp. 8325-8330 ◽  
Author(s):  
Sannula Kesavardhana ◽  
R. K. Subbarao Malireddi ◽  
Amanda R. Burton ◽  
Shaina N. Porter ◽  
Peter Vogel ◽  
...  

Z-DNA-binding protein 1 (ZBP1) is an innate immune sensor of nucleic acids that regulates host defense responses and development. ZBP1 activation triggers inflammation and pyroptosis, necroptosis, and apoptosis (PANoptosis) by activating receptor-interacting Ser/Thr kinase 3 (RIPK3), caspase-8, and the NLRP3 inflammasome. ZBP1 is unique among innate immune sensors because of its N-terminal Zα1 and Zα2 domains, which bind to nucleic acids in the Z-conformation. However, the specific role of these Zα domains in orchestrating ZBP1 activation and subsequent inflammation and cell death is not clear. Here we generated Zbp1ΔZα2/ΔZα2 mice that express ZBP1 lacking the Zα2 domain and demonstrate that this domain is critical for influenza A virus–induced PANoptosis and underlies perinatal lethality in mice in which the RIP homotypic interaction motif domain of RIPK1 has been mutated (Ripk1mRHIM/mRHIM). Deletion of the Zα2 domain in ZBP1 abolished influenza A virus–induced PANoptosis and NLRP3 inflammasome activation. Furthermore, deletion of the Zα2 domain of ZBP1 was sufficient to rescue Ripk1mRHIM/mRHIM mice from perinatal lethality caused by ZBP1-driven cell death and inflammation. Our findings identify the essential role of the Zα2 domain of ZBP1 in several physiological functions and establish a link between Z-RNA sensing via the Zα2 domain and promotion of influenza-induced PANoptosis and perinatal lethality.


Sign in / Sign up

Export Citation Format

Share Document