The apparent high reactivity of some amino groups of bovine serum albumin

1963 ◽  
Vol 74 ◽  
pp. 542-543 ◽  
Author(s):  
N.M. Green
Weed Science ◽  
1971 ◽  
Vol 19 (3) ◽  
pp. 269-273 ◽  
Author(s):  
N. D. Camper ◽  
D. E. Moreland

The influence of pH, temperature, ionic strength, and protein modification on the sorption (moles of chemical bound per mole of protein) of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron) and 3′,4′-dichloropropionanilide (propanil) to bovine serum albumin (hereinafter referred to as BSA) was examined. Free amino groups of BSA were involved in the binding of both diuron and propanil. In addition, tryptophanyl residues appeared to be involved in the binding of propanil. Studies made with derivatives of diuron suggested that the amide hydrogen and carbonyl oxygen of the phenylamide are involved in the binding mechanism. Conformation of the protein was suggested to control the extent of binding. Increased chlorination of the phenyl ring was correlated with increased binding onto BSA. Propanil was bound to a greater extent than diuron by the protein.


2008 ◽  
Vol 55 (3) ◽  
pp. 491-497 ◽  
Author(s):  
Ana Irene Ledesma-Osuna ◽  
Gabriela Ramos-Clamont ◽  
Luz Vázquez-Moreno

The non-enzymatic reaction between reducing sugars and proteins, known as glycation, has received increased attention from nutritional and medical research. In addition, there is a large interest in obtaining glycoconjugates of pure well-characterized oligosaccharides for biological research. In this study, glycation of bovine serum albumin (BSA) by d-glucose, d-galactose and d-lactose under dry-heat at 60 degrees C for 30, 60, 120, 180 or 240 min was assessed and the glycated products studied in order to establish their biological recognition by lectins. BSA glycation was monitored using gel electrophoresis, determination of available amino groups and lectin binding assays. The BSA molecular mass increase and glycation sites were investigated by mass spectrometry and through digestion with trypsin and chymotrypsin. Depending on time and type of sugar, differences in BSA conjugation were achieved. Modified BSA revealed reduction of amino groups' availability and slower migration through SDS/PAGE. d-galactose was more reactive than d-glucose or d-lactose, leading to the coupling of 10, 3 and 1 sugar residues, respectively, after 120 minutes of reaction. BSA lysines (K) were the preferred modified amino acids; both K256 and K420 appeared the most available for conjugation. Only BSA-lactose showed biological recognition by specific lectins.


1991 ◽  
Vol 69 (7) ◽  
pp. 418-427 ◽  
Author(s):  
Jerald E. Mullersman ◽  
James F. Preston III

Reductive alkylation mediated by cyanoborohydride is an attractive approach to the conjugation of small molecules, such as drugs, to proteins. This reaction is specific for protein amino groups and can be conducted under mild conditions with little risk of protein polymerization. However, the lability of the aldehyde function that is needed in such reactions presents a difficulty. We have investigated the use of derivatives of D-galactosamine and D-glucosamine in reductive alkylation, since these sugars contain aldehyde groups that are inherently protected and that may be readily linked to other molecules through their amino groups. The amino groups of these sugars were acylated with N-4-nitrobenzoylglycylglycine. Studies of the reductive coupling of the resultant adducts to bovine serum albumin revealed that conjugation to albumin is strongly dependent on cyanoborohydride, is much faster in the presence of borate, and shows a marked increase in rate between pH 7.0 and 9.0. In the presence of borate, the glucosamine derivative coupled much more rapidly than did the galactosamine derivative. The aryl nitro group of the glucosamine adduct was selectively reduced to an amine, diazotized, and reacted with α-amanitin to form an azo compound. This azo derivative was reductively coupled to form conjugates that inhibit calf thymus RNA polymerase II.Key words: α-amanitin, borate, bovine serum albumin, cyanoborohydride, protein modification, reductive alkylation.


1969 ◽  
Vol 112 (5) ◽  
pp. 619-629 ◽  
Author(s):  
W. S. Pierpoint

1. The reactions between chlorogenoquinone, the o-quinone formed during the oxidation of chlorogenic acid, and bovine serum albumin depend on the ratio of reactants. 2. When the serum albumin is in excess, oxygen is not absorbed and the products are colourless. This reaction probably involves the thiol group of bovine serum albumin; it does not occur with bovine serum albumin which has been treated with p-chloromercuribenzoate, iodoacetamide or Ellman's reagent. 3. When bovine serum albumin reacts with excess of chlorogenoquinone, oxygen is absorbed and the products are red. The red colour is probably formed by reaction of the lysine ∈-amino groups of bovine serum albumin, as it is prevented by treating the protein with formaldehyde, succinic anhydride or O-methylisourea. 4. Bovine serum albumin modified by a 1·5-fold (BSA-Q) and a fivefold (BSA-Q2) excess of chlorogenoquinone were separated by chromatography on DEAE-Sephadex A-50, and some of their properties observed. 5. Reaction of BSA-Q2 with fluorodinitrobenzene suggests that the terminal α-amino group, as well as lysine ∈-amino groups, are combined with chlorogenoquinone.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2993 ◽  
Author(s):  
José Guimarães ◽  
Raquel Giordano ◽  
Roberto Fernandez-Lafuente ◽  
Paulo Tardioli

The preparation of highly porous magnetic crosslinked aggregates (pm-CLEA) of porcine pancreas lipase (PPL) is reported. Some strategies to improve the volumetric activity of the immobilized biocatalyst were evaluated, such as treatment of PPL with enzyme surface-modifying agents (polyethyleneimine or dodecyl aldehyde), co-aggregation with protein co-feeders (bovine serum albumin and/or soy protein), use of silica magnetic nanoparticles functionalized with amino groups (SMNPs) as separation aid, and starch as pore-making agent. The combination of enzyme surface modification with dodecyl aldehyde, co-aggregation with SMNPs and soy protein, in the presence of 0.8% starch (followed by hydrolysis of the starch with α-amylase), yielded CLEAs expressing high activity (immobilization yield around 100% and recovered activity around 80%), high effectiveness factor (approximately 65% of the equivalent free enzyme activity) and high stability at 40 °C and pH 8.0, i.e., PPL CLEAs co-aggregated with SMNPs/bovine serum albumin or SMNPs/soy protein retained 80% and 50% activity after 10 h incubation, respectively, while free PPL was fully inactivated after 2 h. Besides, highly porous magnetic CLEAs co-aggregated with soy protein and magnetic nanoparticles (pm-SP-CLEAs) showed good performance and reusability in the hydrolysis of tributyrin for five 4h-batches.


Author(s):  
G. D. Gagne ◽  
M. F. Miller

We recently described an artificial substrate system which could be used to optimize labeling parameters in EM immunocytochemistry (ICC). The system utilizes blocks of glutaraldehyde polymerized bovine serum albumin (BSA) into which an antigen is incorporated by a soaking procedure. The resulting antigen impregnated blocks can then be fixed and embedded as if they are pieces of tissue and the effects of fixation, embedding and other parameters on the ability of incorporated antigen to be immunocyto-chemically labeled can then be assessed. In developing this system further, we discovered that the BSA substrate can also be dried and then sectioned for immunolabeling with or without prior chemical fixation and without exposing the antigen to embedding reagents. The effects of fixation and embedding protocols can thus be evaluated separately.


1981 ◽  
Vol 46 (03) ◽  
pp. 645-647 ◽  
Author(s):  
M A Orchard ◽  
C Robinson

SummaryThe biological half-life of prostacyclin in Krebs solution, human cell-free plasma or whole blood was measured by bracket assay on ADP-induced platelet aggregation. At 37°C, pH 7.4, plasma and blood reduced the rate of loss of antiaggregatory activity compared with Krebs solution. The protective effect of plasma was greater than that of whole blood. This effect could be partially mimicked by the addition of human or bovine serum albumin to the Krebs solution. The stabilisation afforded by human serum albumin was dependent on the fatty acid content of the albumin, although this was less important for bovine serum albumin.


1974 ◽  
Vol 75 (1) ◽  
pp. 133-140 ◽  
Author(s):  
B. E. Senior

ABSTRACT A radioimmunoassay was developed to measure the levels of oestrone and oestradiol in 0.5–1.0 ml of domestic fowl peripheral plasma. The oestrogens were extracted with diethyl ether, chromatographed on columns of Sephadex LH-20 and assayed with an antiserum prepared against oestradiol-17β-succinyl-bovine serum albumin using a 17 h incubation at 4°C. The specificity, sensitivity, precision and accuracy of the assays were satisfactory. Oestrogen concentrations were determined in the plasma of birds in various reproductive states. In laying hens the ranges of oestrone and oestradiol were 12–190 pg/ml and 29–327 pg/ml respectively. Levels in immature birds, in adult cockerels and in an ovariectomized hen were barely detectable. The mean concentrations of oestrone and oestradiol in the plasma of four non-laying hens (55 pg/ml and 72 pg/ml respectively) and one partially ovariectomized hen (71 pg/ml and 134 pg/ml respectively) were well within the range for laying hens. It is evident that the large, yolk-filled follicles are not the only source of oestrogens in the chicken ovary.


Sign in / Sign up

Export Citation Format

Share Document