scholarly journals Effect of local administration of basic fibroblast growth factor against neuronal damage caused by transient intracerebral mass lesion in rats

1995 ◽  
Vol 697 (1-2) ◽  
pp. 104-111 ◽  
Author(s):  
Noriaki Kawakami ◽  
Shiro Kashiwagi ◽  
Tetsuhiro Kitahara ◽  
Tetsuo Yamashita ◽  
Haruhide Ito
Respiration ◽  
2021 ◽  
pp. 1-5
Author(s):  
Shuliang Guo ◽  
Yang Bai ◽  
Yishi Li ◽  
Tao Chen

A large central bronchopleural fistula (BPF) surrounded by mediastinal tissue was successfully closed by local administration of recombinant bovine basic fibroblast growth factor (rbFGF) using the bronchoscope. No complications were observed during and after this bronchoscopic treatment. This is the first report of the bronchoscopic treatment of a large central BPF by the local spray of rbFGF. The bronchoscopic treatment with rbFGF is a potentially cost-effective method for central BPF surrounded by mediastinal tissue.


1993 ◽  
Vol 13 (2) ◽  
pp. 221-228 ◽  
Author(s):  
Kazuhiko Nozaki ◽  
Seth P. Finklestein ◽  
M. Flint Beal

Basic fibroblast growth factor (bFGF) is a polypeptide that promotes neuronal survival and blocks excitatory amino acid (EAA) neurotoxicity in vitro at very low concentrations. In the present study, we examined whether systemically administered bFGF could prevent neuronal damage induced by either EAAs or hypoxia–ischemia in vivo. Neuroprotective effects were examined in a neonatal model of hypoxia–ischemia (unilateral ligation of the carotid artery followed by exposure to 8% oxygen for 1.5 h) and following intrastriatal injection of N-methyl-d-aspartate (NMDA) in 7-day-old rats. Intraperitoneal administration of a single dose of bFGF (50–300 μg/kg) 30 min before intrastriatal injection of NMDA showed a dose-dependent neuroprotective effect. Repeated doses of bFGF (100 μg/kg) both before and after intrastriatal NMDA injection produced a much greater significant protective effect than a single dose administered prior to the injection. Intraperitoneal injection of single dose of 100 μg/kg of bFGF 30 min before hypoxia–ischemia reduced neuronal damage by 38% (p = 0.14), while administration of bFGF at a dose of 100 μg/kg i.p. three times, 30 min before and 0 and 30 min after hypoxia–ischemia, significantly reduced neuronal damage by 64% (p = 0.004). Systemic administration of bFGF did not change body temperature for up to 3 h. These results show that systemic administration of bFGF can exert neuroprotective effects against both NMDA-induced excitotoxicity and hypoxia–ischemia in vivo.


2006 ◽  
Vol 68 (3) ◽  
pp. 248-250 ◽  
Author(s):  
Shuko OKADA ◽  
Takashi MASU ◽  
Takahiko TSUNODA ◽  
Ryuhei OKUYAMA ◽  
Setsuya AIBA

Sign in / Sign up

Export Citation Format

Share Document