The role of serum in human mixed lymphocyte cultures

1975 ◽  
Vol 16 (1) ◽  
pp. 115-124 ◽  
Author(s):  
H. Hirschberg ◽  
E. Thorsby
1984 ◽  
Vol 159 (4) ◽  
pp. 1238-1252 ◽  
Author(s):  
K L Rock ◽  
B Benacerraf

A large panel of alloreactive, interleukin 2 (IL-2)-producing T cell hybridomas was constructed from B10 alpha BALB/c primary mixed lymphocyte cultures (MLC). Functional hybrids had specificity for either I-Ad or I-Ed. These cells were used to probe determinants on Ia molecules in an attempt to detect molecular association between a nominal antigen and an Ia molecule on an antigen-presenting cell (APC). The response of a small number of these clones was significantly blocked by the addition of the Ir gene-controlled copolymer L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) to culture. A comparison of the inhibited and uninhibited hybrids revealed an identical dose response curve. Further, both types of hybrids were activated by the same stimulator cell and frequently recognized the identical Ia molecule on that cell. Nevertheless, the inhibitory effect of GAT was localized to the stimulator cell and not to the T cell hybrids. All of the hybrids whose stimulation was blocked had specificity for the I-A molecule, which is the gene product known to control and restrict responsiveness to GAT. Further, only GT, but not a number of other related antigens, was also specifically inhibitory, which correlates with the known associational specificity of these antigens on an APC. Finally, the same stimulator cell could be shown to coordinately lose an allostimulatory determinant(s), while it was gaining an I-Ad plus GAT determinant(s). The implications of these findings on the nature of antigen-Ia association and on the role of polymorphic Ia determinants are discussed.


1972 ◽  
Vol 136 (4) ◽  
pp. 962-967 ◽  
Author(s):  
P.-F. Piguet ◽  
P. Vassalli

Spleen cell cultures of radiation chimeras (thymectomized, lethally irradiated mice repopulated with bone marrow cells and thymocytes bearing different chromosomal markers) were stimulated by phytohemagglutinin (PHA) and F1 allogeneic spleen cells. Karyotypic analyses showed a marked predominance of T mitoses on the 2nd and 3rd days of culture followed by a strong predominance of B mitoses on the 4th and 5th days. Analysis of cells undergoing their first mitoses showed that the majority of T mitoses on day 3 resulted from continuous T cell division, and that most cells entering their first mitoses at that time were of B type. Mixed lymphocyte cultures (MLC) of chimeras immunized against allogeneic spleen cells showed sometimes, but not always, a response different from "primary" MLC, with an earlier and stronger predominance of BM mitoses. The role of stimulated T cells in the induction of B mitoses was shown by (a) the incapacity of T-depleted spleen cells to be stimulated by PHA or in primary or secondary MLC, and (b) the restoration of the mitotic response of B cells to PHA by adding to the T cell-depleted culture either a very small number of T cell (identified by their different karyotype: "in vitro chimeras") or the cell-free supernatant of a 24 hr MLC.


1971 ◽  
Vol 134 (4) ◽  
pp. 857-870 ◽  
Author(s):  
Darcy B. Wilson ◽  
Dianne H. Fox

The proliferative reactivity of lymphocytes from rat donors maintained under germfree or conventional conditions was examined in mixed lymphocyte cultures stimulated with allogeneic and xenogeneic cell surface antigens. The results show (a) that lymphocytes from conventionally maintained rats are less reactive to human, hamster, guinea pig, and mouse cell surface antigens than to the major H alloantigens, and (b) that lymphocytes from germfree rats display no demonstrable reactivity to xenogeneic cells, but are quantitatively normal in their response to allogenic cells. The conclusion drawn from these observations is that the circulating lymphocyte pool of an individual consists of a greater proportion of cells reactive to H alloantigens of other members of the same species than to the xenogeneic cellular antigens of members of other species and that this large number of cells is not generated by a mechanism involving immunization to cross-reactive environmental antigens.


Nature ◽  
1967 ◽  
Vol 215 (5097) ◽  
pp. 164-165 ◽  
Author(s):  
G. A. CURRIE

2008 ◽  
Vol 3 (5) ◽  
pp. 323-339 ◽  
Author(s):  
F. Jørgensen ◽  
L. U. Lamm ◽  
F. Kissmeyer-nielsen

Sign in / Sign up

Export Citation Format

Share Document