Interactions of macromolecules on cell membranes and restrictions of T-cell specificity by products of the major histocompatibility complex

1977 ◽  
Vol 32 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Richard J. Cohen ◽  
Herman N. Eisen
1999 ◽  
Vol 189 (6) ◽  
pp. 883-894 ◽  
Author(s):  
Johan K. Sandberg ◽  
Klas Kärre ◽  
Rickard Glas

Triggering of a T cell requires interaction between its specific receptor (TCR) and a peptide antigen presented by a self–major histocompatibility complex (MHC) molecule. TCR recognition of self-MHC by itself falls below the threshold of detection in most systems due to low affinity. To study this interaction, we have used a read-out system in which antigen-specific effector T cells are confronted with targets expressing high levels of MHC compared with the selecting and priming environment. More specifically, the system is based on CD8+ T cells selected in an environment with subnormal levels of MHC class I in the absence of β2-microglobulin. We observe that the MHC restriction element can trigger viral peptide-specific T cells independently of the peptide ligand, provided there is an increase in self-MHC density. Peptide-independent triggering required at least four times the natural in vivo level of MHC expression. Furthermore, recognition of the restriction element at expression levels below this threshold was still enough to compensate for lack of affinity to peptides carrying alanine substitutions in major TCR contact residues. Thus, the specificity in TCR recognition and T cell activation is fine tuned by the avidity for self-MHC, and TCR avidities for peptide and MHC may substitute for each other. These results demonstrate a functional role for TCR avidity for self-MHC in tuning of T cell specificity, and support a role for cross-reactivity on “self” during T cell selection and activation.


Author(s):  
Wahiba Ezzemani ◽  
Marc P. Windisch ◽  
Anass Kettani ◽  
Haya Altawalah ◽  
Jalal Nourlil ◽  
...  

Background: Globally, the recent outbreak of Zika virus (ZIKV) in Brazil, Asia Pacific, and other countries highlighted the unmet medical needs. Currently, there are neither effective vaccines nor therapeutics available to prevent or treat ZIKV infection. Objective: In this study, we aimed to design an epitope-based vaccine for ZIKV using an in silico approach to predict and analyze B- and T-cell epitopes. Methods: The prediction of the most antigenic epitopes has targeted the capsid and the envelope proteins as well as nonstructural proteins NS5 and NS3 using immune-informatics tools PROTPARAM, CFSSP, PSIPRED, and Vaxijen v2.0. B and T-cell epitopes were predicted using ABCpred, IEDB, TepiTool, and their toxicity were evaluated using ToxinPred. The 3-dimensional epitope structures were generated by PEP-FOLD. Energy minimization was performed using Swiss-Pdb Viewer, and molecular docking was conducted using PatchDock and FireDock server. Results: As a result, we predicted 307 epitopes of MHCI (major histocompatibility complex class I) and 102 epitopes of MHCII (major histocompatibility complex class II). Based on immunogenicity and antigenicity scores, we identified the four most antigenic MHC I epitopes: MVLAILAFLR (HLA-A*68 :01), ETLHGTVTV (HLA-A*68 :02), DENHPYRTW (HLA-B*44 :02),QEGVFHTMW (HLA-B*44 :03) and TASGRVIEEW (HLA-B*58:01), and MHC II epitopes: IIKKFKKDLAAMLRI (HLA-DRB3*02 :02), ENSKMMLELDPPFGD (HLA-DRB3*01:01), HAETWFFDENHPYRT (HLA-DRB3*01:01), TDGVYRVMTRRLLGS (HLA-DRB1*11 :01), and DGCWYGMEIRPRKEP (HLA-DRB5*01:01). Conclusion : This study provides novel potential B cell and T cell epitopes to fight Zika virus infections and may prompt further development of vaccines against ZIKV and other emerging infectious diseases. However, further investigations for protective immune response by in vitro and in vivo studies to ratify the immunogenicity, safety of the predicted structure, and ultimately the vaccine properties to prevent ZIKV infections are warranted.


1973 ◽  
Vol 138 (6) ◽  
pp. 1289-1304 ◽  
Author(s):  
David H. Sachs ◽  
James L. Cone

Antibodies cytotoxic for only a subpopulation of C57Bl/10 lymph node and spleen cells were detected when rat antiserum against B10.D2 was exhaustively absorbed with B10.A lymphocytes. Antibodies of similar specificity were also detected in B10.A anti-B10.D2 and in B10.A anti-C57Bl/10 alloantisera. Reactions with recombinant strains of mice indicate that the cell-surface antigen(s) responsible for this specificity is determined by gene(s) in or to the left of the Ir-1 region of the major histocompatibility complex. A variety of criteria implicate B cells as the subpopulation of lymphocytes bearing this antigen. In view of these data and the recent report by others of a T-cell alloantigen determined by gene(s) in the major histocompatibility complex, it seems possible that there may be a variety of H-2-linked alloantigens expressed preferentially on subclasses of lymphocytes.


1976 ◽  
Vol 22 (6) ◽  
pp. 604-611 ◽  
Author(s):  
Bernice Schacter ◽  
Kathryn Pollard ◽  
Fallon Maylack ◽  
Richard L. Humphrey ◽  
Susan H. Hsu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document