Diversity of T cell receptors specific for the VSV antigenic peptide (N52-59) Bound by the H-2Kb class I molecule

1995 ◽  
Vol 160 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Monica Imarai ◽  
Earl C. Goyarts ◽  
Grada M. Van Bleek ◽  
Stanley G. Nathenson
2010 ◽  
Vol 6 (10) ◽  
pp. e1001149 ◽  
Author(s):  
Isabel K. Macdonald ◽  
Maria Harkiolaki ◽  
Lawrence Hunt ◽  
Timothy Connelley ◽  
A. Victoria Carroll ◽  
...  

2020 ◽  
Vol 432 (24) ◽  
pp. 166697 ◽  
Author(s):  
Yanan He ◽  
Pragati Agnihotri ◽  
Sneha Rangarajan ◽  
Yihong Chen ◽  
Melissa C. Kerzic ◽  
...  

Blood ◽  
2012 ◽  
Vol 119 (15) ◽  
pp. 3373-3374 ◽  
Author(s):  
Terrence L. Geiger

In this issue of Blood, Plesa et al demonstrate that human Foxp3+ regulatory T cells can be redirected using MHC class I–restricted T-cell receptors (TCRs), showing a surprising lack of correlation of TCR affinity and their suppressive potency.1


2020 ◽  
Author(s):  
Francisco Gambón-Deza

AbstractCetaceans correspond to mammals that have returned to the marine environment. Adaptive changes are very significant with the conversion of the limbs into flippers. It is studied the changes that have occurred in immunoglobulins, MHC class I and II and T cell receptors genes. Constant regions of immunoglobulins are similar to those of the rest of mammals. An exception is the IgD gene, which is composed of three CH domains but CH1 similar to CH1 of immunoglobulin M. In the IGHV locus, it exist a decrease in the number of VH genes with the absence of genes within Clan I. The number of Vλ genes is greater than that of Vκ. In the genes for T lymphocyte receptors, it exists a decrease in the number of Vα genes with loss of significant clades and subclades. In Vβ and Vγ, there is also the loss of clades. These declines of Vα, Vβ and Vγ are not present Artiodactyla, and they are specific to Cetaceans. In MHC present tree evolutive lines of class I genes. These species have DQ, DR, DO and DM genes, but they are no present DP genes.


2020 ◽  
Vol 89 (1) ◽  
pp. 717-739 ◽  
Author(s):  
Zakia Djaoud ◽  
Peter Parham

In all human cells, human leukocyte antigen (HLA) class I glycoproteins assemble with a peptide and take it to the cell surface for surveillance by lymphocytes. These include natural killer (NK) cells and γδ T cells of innate immunity and αβ T cells of adaptive immunity. In healthy cells, the presented peptides derive from human proteins, to which lymphocytes are tolerant. In pathogen-infected cells, HLA class I expression is perturbed. Reduced HLA class I expression is detected by KIR and CD94:NKG2A receptors of NK cells. Almost any change in peptide presentation can be detected by αβ CD8+ T cells. In responding to extracellular pathogens, HLA class II glycoproteins, expressed by specialized antigen-presenting cells, present peptides to αβ CD4+ T cells. In comparison to the families of major histocompatibility complex (MHC) class I, MHC class II and αβ T cell receptors, the antigenic specificity of the γδ T cell receptors is incompletely understood.


1992 ◽  
Vol 176 (3) ◽  
pp. 903-907 ◽  
Author(s):  
T Crompton ◽  
H Pircher ◽  
H R MacDonald

During thymus development CD4+ CD8+ precursor cells differentiate into mature CD4+ and CD8+ T cells expressing T cell receptors (TCR) that recognize foreign antigens in association with major histocompatibility complex (MHC) class II or I molecules, respectively. Studies with TCR transgenic mice have shown that the accumulation of mature CD4+ and CD8+ thymocytes is strongly skewed by the MHC restriction specificity of the TCR, thus suggesting that commitment of CD4+ CD8+ precursors to the CD4 or CD8 lineage is a direct consequence of TCR/MHC interactions. However, we show here that CD4+ cells expressing an inappropriate (MHC class I-specific) TCR appear transiently in the neonatal thymus of TCR transgenic mice and can also be found in the periphery of adult TCR transgenic recombination-deficient SCID mice. These data argue that the early stages of CD4 and CD8 lineage development in the thymus are (at least in part) controlled by homeostatic mechanisms independent of appropriate TCR/MHC interactions.


1992 ◽  
Vol 176 (2) ◽  
pp. 439-447 ◽  
Author(s):  
J L Casanova ◽  
J C Cerottini ◽  
M Matthes ◽  
A Necker ◽  
H Gournier ◽  
...  

We previously showed that H-2Kd-restricted cytotoxic T lymphocyte (CTL) clones specific for a single nonapeptide derived from the Plasmodium berghei circumsporozoite (PbCS) protein displayed T cell receptors (TCRs) of highly diverse primary structure. We have now analyzed the TCR repertoire of CTLs that recognize a peptide derived from the human class I major histocompatibility complex (MHC) molecule HLA-Cw3 in association with the same murine class I MHC molecule H-2Kd. We first sequenced the TCR alpha and beta genes of the CTL clone Cw3/1.1 and, based on this genomic analysis, the TCR alpha and beta cDNA junctional regions of 23 independent H-2Kd-restricted CTL clones specific for HLA-Cw3. The results show that the TCR chains display very limited heterogeneity, both in terms of V alpha, J alpha, V beta, and J beta segments, and in terms of length and sequence of the CDR3 alpha and beta loops. The TCR repertoire used in vivo was then analyzed by harvesting CTL populations from the peritoneal cavity of immune mice. The peritoneal exudate lymphocytes (PELs) displayed HLA-Cw3-specific cytolytic activity in the absence of any stimulation in vitro. Remarkably, most of these freshly isolated PELs expressed TCRs that shared the same structural features as those from HLA-Cw3-reactive CTL clones. Thus, our results show that a peptide from HLA-Cw3 presented by H-2Kd selects CTLs that bear TCRs of very limited diversity in vivo. When taken together with the high diversity of the TCRs specific for the PbCS peptide, these findings suggest that natural tolerance to self peptides presented by class I MHC molecules may substantially reduce the size of the TCR repertoire of CTLs specific for antigenic peptides homologous to self.


Sign in / Sign up

Export Citation Format

Share Document