A model for using the diffusion cell in the determination of multicomponent diffusion coefficients in gels or foods

1994 ◽  
Vol 49 (13) ◽  
pp. 2123-2128 ◽  
Author(s):  
Susana E. Zorrilla ◽  
Amelia C. Rubiolo
1985 ◽  
Vol 63 (2) ◽  
pp. 476-482 ◽  
Author(s):  
Derek G. Leaist ◽  
Robert A. Noulty

A general method for the determination of multicomponent diffusion coefficients is developed using the algebraic technique of matrix diagonalization. When linear combinations of measurements from several multicomponent diffusion experiments performed with different initial concentration gradients (but with the same final composition) are analyzed as simple binary data, particular combinations may be found that transform the multicomponent diffusion coefficient matrix D to diagonal form and thus yield time-invariant, pseudo-binary diffusion coefficients: the eigenvalues of D. Since the matrix that diagonalizes D is given by the coefficients used to form the linear combinations, D is easily recovered by the inverse transformation. The advantages of the eigenvalue method are briefly discussed. For testing purposes, ternary diffusion coefficients are determined from conductance measurements for dilute aqueous NaOH + NaCl mixtures. Diffusion of NaOH in aqueous NaCl is significantly more rapid than in pure water, and large coupled flows of NaCl are observed. The results are in close agreement with behavior predicted by Onsager–Fuoss theory.


1974 ◽  
Vol 52 (15) ◽  
pp. 2684-2691 ◽  
Author(s):  
K. R. Weller ◽  
N. S. Stenhouse ◽  
Harry Watts

In the past, some authors have not defined the diffusion coefficient appropriate to their experimental system, consequently, valuable data have been lost. We discuss the various diffusion coefficients referred to all possible frames of reference in relation to the choice of a suitable experimental system for the determination of gaseous diffusion coefficients in porous media. A modified Ney and Armistead type diffusion cell is described with an improved method of calculation of results from continuously monitored concentration changes in the diffusion cell.


Lab on a Chip ◽  
2017 ◽  
Vol 17 (16) ◽  
pp. 2768-2776 ◽  
Author(s):  
Christine Peters ◽  
Ludger Wolff ◽  
Sandra Haase ◽  
Julia Thien ◽  
Thorsten Brands ◽  
...  

Microfluidic measurement of multicomponent diffusion coefficients using minimal number of experiments with high accuracy in short time.


2006 ◽  
Vol 932 ◽  
Author(s):  
Dušan Vopálka ◽  
Helena Filipská ◽  
Antonín Vokál

ABSTRACTThe results of 3H, 36Cl and 137Cs diffusion experiments through compacted bentonite using a new design of diffusion cell and a new methodology of diffusion coefficients evaluation are presented. The diffusion cell was made from the stainless steel and enables to connect it directly to the input and/or output reservoirs without any tubing. The evaluation of diffusion coefficients utilizes a compartmental model developed in the environment of the GoldSim transport code. It enables to determine diffusion coefficients for various types of boundary conditions, including also input and output filters. The influence of the diffusion through filters on the determined values of both effective (De) and apparent (Da) diffusion coefficients was numerically demonstrated for the through diffusion method. This effect is most important for Da, the value of which would be underestimated using standard ways of evaluation for neutral and positively charged species, mainly in the case of high effective porosity.The comparison of standard and the newly developed method of evaluation of diffusion coefficients showed a significant influence of diffusion in filters for HTO. Contrary to the standard method of evaluation, the evaluation taking into account filters showed here no difference between total and effective porosity. The effect of filter resistance was negligible for Cl-, especially at high dry density of compacted bentonite, due to the anion exclusion effect. The numerical model developed enabled to determine Da values of Cs+ from the concentration change in the inlet reservoir.


Sign in / Sign up

Export Citation Format

Share Document