Lifetime and quenching rate constants for a flourescent excited state of tetramethylethylene (2,3-dimethyl-2-butene)

1985 ◽  
Vol 120 (6) ◽  
pp. 491-495 ◽  
Author(s):  
M.A. Wickramaaratchi ◽  
J.M. Preses ◽  
Ralph E. Weston
2002 ◽  
Vol 67 (8) ◽  
pp. 1154-1164 ◽  
Author(s):  
Nachiappan Radha ◽  
Meenakshisundaram Swaminathan

The fluorescence quenching of 2-aminodiphenylamine (2ADPA), 4-aminodiphenylamine (4ADPA) and 4,4'-diaminodiphenylamine (DADPA) with tetrachloromethane, chloroform and dichloromethane have been studied in hexane, dioxane, acetonitrile and methanol as solvents. The quenching rate constants for the process have also been obtained by measuring the lifetimes of the fluorophores. The quenching was found to be dynamic in all cases. For 2ADPA and 4ADPA, the quenching rate constants of CCl4 and CHCl3 depend on the viscosity, whereas in the case of CH2Cl2, kq depends on polarity. The quenching rate constants for DADPA with CCl4 are viscosity-dependent but the quenching with CHCl3 and CH2Cl2 depends on the polarity of the solvents. From the results, the quenching mechanism is explained by the formation of a non-emissive complex involving a charge-transfer interaction between the electronically excited fluorophores and ground-state chloromethanes.


2001 ◽  
Vol 115 (7) ◽  
pp. 3144-3154 ◽  
Author(s):  
N. Sadeghi ◽  
D. W. Setser ◽  
A. Francis ◽  
U. Czarnetzki ◽  
H. F. Döbele

1966 ◽  
Vol 44 (18) ◽  
pp. 2173-2180 ◽  
Author(s):  
Terumi Terao ◽  
Shun-Ichi Hirokami ◽  
Shin Sato ◽  
R. J. Cvetanović

Experimental evidence is presented for a rapidly occurring intersystem crossing of the electronically excited dideuteroethylene molecules initially formed in the benzene-photosensitized reaction at 2 537 Å and 25 °C to another excited state which is responsible for the internal H-atom scrambling. The mechanism is entirely analogous to that previously postulated for the photoexcited states sensitized by Hg(3P1) atoms but the rate constants for intersystem crossing and molecular decomposition are drastically decreased as a result of the smaller amount of energy available for the excitation.


1983 ◽  
Vol 61 (5) ◽  
pp. 801-808 ◽  
Author(s):  
Yuan L. Chow ◽  
Gonzalo E. Buono-Core ◽  
Bronislaw Marciniak ◽  
Carol Beddard

Bis(acetylacetonato)copper(II), Cu(acac)2, quenches triplet excited states of ketones and polynuclear aromatic hydrocarbons efficiently, but only aromatic ketones with high triplet energy successfully sensitize photoreduction of Cu(acac)2 in alcohols under nitrogen to give derivatives of aeetylacetonatocopper(I), Cu(acac). For the triplet state benzophenone-sensitized photoreduction of Cu(acac)2, the quantum yields of photoreduction (ΦC) and those of benzophenone disappearance (ΦB) were determined in methanol with various concentrations of Cu(acac)2. The values of the quenching rate constant, kq, determined from these two types of monitors on the basis of the proposed mechanism were in good agreement (6.89 ~ 7.35 × 109 M−1 s−1). This value was higher, by a factor of about two, than that obtained from the monitor of the benzophenone triplet decay rates generated by flash photolysis in the presence of Cu(acac)2. The quenching rate constants of various aromatic ketone and hydrocarbon triplet states by Cu(acac)2 were determined by flash photolysis to be in the order of the diffusion rate constant and the quantum yields of these photoreductions were found to be far from unity. Paramagnetic quenching, with contributions of electron exchange and charge transfer, was proposed as a possible quenching mechanism. For a series of aromatic ketone sensitizers with higher triplet energy, this mechanism was used to rationalize the observed high quenching rate constants in contrast to the low quantum yields of photoreduction.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4361
Author(s):  
Bogdan Dereka ◽  
Ina Fureraj ◽  
Arnulf Rosspeintner ◽  
Eric Vauthey

The formation of a halogen-bond (XB) complex in the excited state was recently reported with a quadrupolar acceptor–donor–acceptor dye in two iodine-based liquids (J. Phys. Chem. Lett. 2017, 8, 3927–3932). The ultrafast decay of this excited complex to the ground state was ascribed to an electron transfer quenching by the XB donors. We examined the mechanism of this process by investigating the quenching dynamics of the dye in the S1 state using the same two iodo-compounds diluted in inert solvents. The results were compared with those obtained with a non-halogenated electron acceptor, fumaronitrile. Whereas quenching by fumaronitrile was found to be diffusion controlled, that by the two XB compounds is slower, despite a larger driving force for electron transfer. A Smoluchowski–Collins–Kimball analysis of the excited-state population decays reveals that both the intrinsic quenching rate constant and the quenching radius are significantly smaller with the XB compounds. These results point to much stronger orientational constraint for quenching with the XB compounds, indicating that electron transfer occurs upon formation of the halogen bond.


Sign in / Sign up

Export Citation Format

Share Document