scholarly journals Halogen-Bond Assisted Photoinduced Electron Transfer

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4361
Author(s):  
Bogdan Dereka ◽  
Ina Fureraj ◽  
Arnulf Rosspeintner ◽  
Eric Vauthey

The formation of a halogen-bond (XB) complex in the excited state was recently reported with a quadrupolar acceptor–donor–acceptor dye in two iodine-based liquids (J. Phys. Chem. Lett. 2017, 8, 3927–3932). The ultrafast decay of this excited complex to the ground state was ascribed to an electron transfer quenching by the XB donors. We examined the mechanism of this process by investigating the quenching dynamics of the dye in the S1 state using the same two iodo-compounds diluted in inert solvents. The results were compared with those obtained with a non-halogenated electron acceptor, fumaronitrile. Whereas quenching by fumaronitrile was found to be diffusion controlled, that by the two XB compounds is slower, despite a larger driving force for electron transfer. A Smoluchowski–Collins–Kimball analysis of the excited-state population decays reveals that both the intrinsic quenching rate constant and the quenching radius are significantly smaller with the XB compounds. These results point to much stronger orientational constraint for quenching with the XB compounds, indicating that electron transfer occurs upon formation of the halogen bond.

2021 ◽  
Author(s):  
Anbazhagan Venkattappan ◽  
Kandavelu Velappan ◽  
Renganathan Rajalingam

Abstract Excited state interactions of zeolite adsorbed porphyrins have been investigated by steady state luminescence quenching technique with certain antioxidants such as reduced glutathione, ascorbic acid and L-cysteine. The zeolite supported porphyrins, meso-tetra (N-methyl-4-pyridyl) porphyrin (H2TMPyP4+) and zinc tetra(N-methyl-4-pyridyl) porphyrin (ZnTMPyP4+) was prepared and characterized by various techniques such as Diffuse Reflectance Spectra (DRS), Scanning Electron Microscope (SEM), powder X-Ray Diffraction (XRD) and BET surface area. The interaction of zeolites with porphyrins are shown to increase the lifetime of the singlet excited state of porphyrins and decays are biphasic in nature. The splitting of the emission band of porphyrins occurs in 1:1 glycerol: water solution due to the changes in the dielectric of the solvation sphere associated with porphyrin. The Stern-Volmer plots of I0/I vs quencher total concentration [Q] were linear in the whole range of [Q] used. This study revealed effective quenching for zinc porphyrin compared to free base porphyrin. The effect of quenchers and zeolite acidity has also been studied. Quenching rate constant (kq) is on the order of 109 M−1 s−1. The quenching reaction obeys Rehm-Weller Equation and is shown to be due to thermodynamically favoured electron transfer from quenchers to the excited singlet state of porphyrins (reductive quenching).


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jinseok Kim ◽  
Juwon Oh ◽  
Seongchul Park ◽  
Jose L. Zafra ◽  
Justin R. DeFrancisco ◽  
...  

Abstract The scientific significance of excited-state aromaticity concerns with the elucidation of processes and properties in the excited states. Here, we focus on TMTQ, an oligomer composed of a central 1,6-methano[10]annulene and 5-dicyanomethyl-thiophene peripheries (acceptor-donor-acceptor system), and investigate a two-electron transfer process dominantly stabilized by an aromatization in the low-energy lying excited state. Our spectroscopic measurements quantitatively observe the shift of two π-electrons between donor and acceptors. It is revealed that this two-electron transfer process accompanies the excited-state aromatization, producing a Baird aromatic 8π core annulene in TMTQ. Biradical character on each terminal dicyanomethylene group of TMTQ allows a pseudo triplet-like configuration on the 8π core annulene with multiexcitonic nature, which stabilizes the energetically unfavorable two-charge separated state by the formation of Baird aromatic core annulene. This finding provides a comprehensive understanding of the role of excited-state aromaticity and insight to designing functional photoactive materials.


2020 ◽  
Vol 19 (7) ◽  
pp. 738-744 ◽  
Author(s):  
Kai Xu ◽  
Hengda Sun ◽  
Tero-Petri Ruoko ◽  
Gang Wang ◽  
Renee Kroon ◽  
...  

2017 ◽  
Vol 114 (7) ◽  
pp. 1480-1485 ◽  
Author(s):  
Puja Goyal ◽  
Sharon Hammes-Schiffer

Blue light using flavin adenine dinucleotide (BLUF) proteins are essential for the light regulation of a variety of physiologically important processes and serve as a prototype for photoinduced proton-coupled electron transfer (PCET). Free-energy simulations elucidate the active site conformations in the AppA (activation of photopigment and puc expression) BLUF domain before and following photoexcitation. The free-energy profile for interconversion between conformations with either Trp104 or Met106 closer to the flavin, denoted Trpin/Metout and Trpout/Metin, reveals that both conformations are sampled on the ground state, with the former thermodynamically favorable by ∼3 kcal/mol. These results are consistent with the experimental observation of both conformations. To analyze the proton relay from Tyr21 to the flavin via Gln63, the free-energy profiles for Gln63 rotation were calculated on the ground state, the locally excited state of the flavin, and the charge-transfer state associated with electron transfer from Tyr21 to the flavin. For the Trpin/Metout conformation, the hydrogen-bonding pattern conducive to the proton relay is not thermodynamically favorable on the ground state but becomes more favorable, corresponding to approximately half of the configurations sampled, on the locally excited state. The calculated energy gaps between the locally excited and charge-transfer states suggest that electron transfer from Tyr21 to the flavin is more facile for configurations conducive to proton transfer. When the active site conformation is not conducive to PCET from Tyr21, Trp104 can directly compete with Tyr21 for electron transfer to the flavin through a nonproductive pathway, impeding the signaling efficiency.


1975 ◽  
Vol 53 (21) ◽  
pp. 3269-3275 ◽  
Author(s):  
C. Rullière ◽  
E. C. Colson ◽  
P. C. Roberge

The triplet–triplet (T–T) absorption spectrum of 1,3,6,8-tetraphenylpyrene (TPP) was measured from 400 to 620 nm. The data obtained are compared with theoretical calculations using the Ruedenberg–Scherr FEMO model. A planar triplet state is evidenced by fine vibrational structure. The T–T quenching rate constant measured (1.3 ± 0.1 × 109 M−1 s−1) is 20% of the expected diffusion-controlled value.


2021 ◽  
Author(s):  
Martin L. Kirk ◽  
David A. Shultz ◽  
Patrick Hewitt ◽  
Daniel E. Stasiw ◽  
Ju Chen ◽  
...  

A change in the sign of the ground state electron spin polarization (ESP) is reported in complexes where an organic radical (nitronylnitroxide, NN) is covalently attached to a donor–acceptor chromophore via two different meta-phenylene bridges.


2020 ◽  
Vol 56 (45) ◽  
pp. 6058-6061 ◽  
Author(s):  
Dili R. Subedi ◽  
Habtom B. Gobeze ◽  
Yuri E. Kandrashkin ◽  
Prashanth K. Poddutoori ◽  
Art van der Est ◽  
...  

Radical ion-pair energy as high as 1.48 eV with lifetime as much as ∼1 μs, exclusively from the triplet excited state of a photosensitizer, is established in a novel donor–acceptor conjugate.


RSC Advances ◽  
2016 ◽  
Vol 6 (110) ◽  
pp. 108404-108410 ◽  
Author(s):  
Y. Y. Pan ◽  
J. Huang ◽  
Z. M. Wang ◽  
S. T. Zhang ◽  
D. W. Yu ◽  
...  

The ωB97X was the most reliable functional for the accurate description of HLCT state at ground state and excited state.


Sign in / Sign up

Export Citation Format

Share Document