Analysis of corrosion potential fluctuation for stress corrosion cracking

1990 ◽  
Vol 31 ◽  
pp. 503-508 ◽  
Author(s):  
K. Yamakawa ◽  
H. Inoue
2006 ◽  
Vol 321-323 ◽  
pp. 254-259 ◽  
Author(s):  
Akio Yonezu ◽  
Hideo Cho ◽  
Takeshi Ogawa ◽  
Mikio Takemoto

Both the acoustic emission (AE) and corrosion potential fluctuation were monitored for chloride stress corrosion cracking (SCC) of sensitized Type-304 stainless steel plate under bi-axial stress states. Branched SCCs were produced from rectangular-shaped corrosion pits initiated by falling-off of surface grains and filled with chromium oxide in 30mass% MgCl2 solution (363K). Both the AE and potential fluctuation were simultaneously detected during pit formation and SCC growth. Two types of AE (Type-I and Type-II) were monitored. Type-I AEs with higher frequency components were detected during the pit growth and supposed to be produced by falling-off of surface grains due to intergranular attack, while a number of Type-II AEs (approximately 12,500 counts) with low frequency components were detected during SCC propagation and supposed to be produced by cracking of the chromium oxy-hydroxides. Though the AEs detected during SCC test are not always the primary AEs from the SCC itself, secondary AEs can be usefully utilized to monitor the SCC initiation and propagation as well as the corrosion potential fluctuation.


Author(s):  
Donald Oldiges ◽  
Scott Hamilton

Molybdenum disulfide (MoS2) is a popular lubricant, however a study completed in the early 1990’s stated that this type of lubricant can lead to stress corrosion cracking (SSCC) of the bolting materials. However, over the past 20 years, many bolting applications using molybdenum disulfide based compounds have been found to provide better galling resistance to the bolt assembly than many other components. It has also been shown to have a few other less desirable traits such as potential for corrosion in specific environments. Therefore, for successful bolting applications one must consider all the pros and cons of the anti-seize compound they select. One of the negative properties of molybdenum compounds is their link to SSCC on some alloys in specific environmental conditions. This paper focuses on corrosion potential.


2021 ◽  
pp. 29-39
Author(s):  
LYUDMILA NYRKOVA ◽  
PAVLO LISOVYI ◽  
LARYSA GONCHARENKO ◽  
SVETLANA OSADCHUK ◽  
ANATOLIY KLYMENKO ◽  
...  

Purpose. Investigate the regularities of corrosion cracking of 10G2FB steel under cathodic protection.Methodology. The following methods were used: slow strain rate, scanning electron microscopy, electrolytic hydrogenation, mass measurement.Results. The regularities of corrosion cracking of pipe steel 10G2FB in near neutral soil environment NS4 in the range of potentials from the corrosion potential to -1.2 V were investigated. According to the results of a complex of corrosion-mechanical, electrochemical and physical studies, it was found that with a shift in the cathodic polarization potential in the range of -0,75 V ® -0,95 V ® -1,05 V ® -1,2 V ® -0.95 V the coefficient of susceptibility of this steel to stress corrosion cracking KS increases correspondingly, 1,09 ® 1,11 ® 1,13 ® 1,26. The concentration of hydrogen which penetrating into steel at these potentials changes nonmonotonically: 0 ® 0 ® 0,057 ® 0,018 mol/dm3. The rate of residual corrosion with a potential shift in the series Еcor ® -0,75 V ® -0,95 V ® -1,05 V decreases first sharply, then slowly: 0.035 mm/year ® 0.005 mm/year ® 0.0009 mm/year ® 0.0004 mm/year, i.e. at high cathodic potentials, the applied polarization is spent on the decomposition of the aqueous electrolyte with the release of hydrogen, which penetrates into the steel and causes brittle cracking, which is confirmed by an increasing in the part of brittle fracture in the surface morphology of the specimens.Scientific originality. New results of fundamental research concerning the regularities of stress-corrosion cracking of ferrite-pearlite class steel of pipe assortment 10G2FB under conditions of cathodic protection in the range of potentials from the corrosion potential to -1.2 V have been obtained. It was revealed that a feature of the effect of cathodic polarization in the indicated range of potentials when assessing the tendency to stress corrosion cracking by the KS coefficient is an increasing in the relative narrowing and a decrease in the relative elongation, which generally indicates the embrittlement of the metal under the contact with corrosive medium and potential. Strength characteristics remain almost the same. The greatest tendency to stress-corrosion cracking is observed at a polarization potential of -1.0 V or more negative.Practical value. The developed methodology for a complex study of the regularities of stress- corrosion cracking was used for study of 10G2FB steel of the pipe assortment in a model soil environment NS4 under conditions simulating operating conditions. The new data obtained on the regularities of stress-corrosion cracking of steel will be useful for preventing the stress-corrosion cracking of main gas pipelines during operation.


Sign in / Sign up

Export Citation Format

Share Document