XPS study of the electrochemical surface oxidation of Platinum in N H2SO4 acid electrolyte

1984 ◽  
Vol 29 (10) ◽  
pp. 1305-1314 ◽  
Author(s):  
M. Peuckert ◽  
F.P. Coenen ◽  
H.P. Bonzel
1995 ◽  
Vol 41 (1) ◽  
pp. 9-14 ◽  
Author(s):  
V. Alderucci ◽  
L. Pino ◽  
P.L. Antonucci ◽  
W. Roh ◽  
J. Cho ◽  
...  

2006 ◽  
Vol 600 (8) ◽  
pp. 1628-1631 ◽  
Author(s):  
N. Alov ◽  
D. Kutsko ◽  
I. Spirovová ◽  
Z. Bastl

2019 ◽  
Vol 143 ◽  
pp. 105939 ◽  
Author(s):  
Valentine A. Chanturiya ◽  
I.Zh. Bunin ◽  
Maria Ryazantseva

1989 ◽  
Vol 222 (2-3) ◽  
pp. L819-L824 ◽  
Author(s):  
Alexander V. Kolobov ◽  
Jas Pal S. Badyal ◽  
Richard M. Lambert

1998 ◽  
Vol 412-413 ◽  
pp. 544-554 ◽  
Author(s):  
B.J Kowalski ◽  
B.A Orłowski ◽  
J Ghijsen

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4441
Author(s):  
V. Cascos ◽  
R. Martínez-Coronado ◽  
M. T. Fernández-Díaz ◽  
J. A. Alonso

New polycrystalline SrMo1−xMxO4−δ (M = Fe and Cr) scheelite oxides have been prepared by topotactical oxidation, by annealing in air at 500 °C, from precursor perovskites with the stoichiometry SrMo1−xMxO3−δ (M = Fe and Cr). An excellent reversibility between the oxidized Sr(Mo,M)O4−δ scheelite and the reduced Sr(Mo,M)O3−δ perovskite phase accounts for the excellent behavior of the latter as anode material in solid-oxide fuel cells. A characterization by X-ray powder diffraction (XRD) and neutron powder diffraction (NPD) has been carried out to determine the crystal structure features. The scheelite oxides are tetragonal, space group I41/a (No. 88). The Rietveld-refinement from NPD data at room temperature shows evidence of oxygen vacancies in the structure, due to the introduction of Fe3+/Cr4+ cations in the tetrahedrally-coordinated B sublattice, where Mo is hexavalent. A thermal analysis of the reduced perovskite (SrMo1−xMxO3−δ) in oxidizing conditions confirms the oxygen stoichiometry obtained by NPD data; the stability range of the doped oxides, below 400–450 °C, is lower than that for the parent SrMoO3 oxide. The presence of a Mo4+/Mo5+ mixed valence in the reduced SrMo1−xMxO3−δ perovskite oxides confers greater instability against oxidation compared with the parent oxide. Finally, an XPS study confirms the surface oxidation states of Mo, Fe, and Cr in the oxidized samples SrMo0.9Fe0.1O4-δ and SrMo0.8Cr0.2O4-δ.


2018 ◽  
Vol 36 (1) ◽  
pp. 01A114 ◽  
Author(s):  
Małgorzata Kot ◽  
Justyna Łobaza ◽  
Franziska Naumann ◽  
Hassan Gargouri ◽  
Karsten Henkel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document