An experimental and computational investigation of crack growth initiation in three-point bend fracture specimens

1995 ◽  
Vol 50 (1) ◽  
pp. 1-9 ◽  
Author(s):  
V.G. Degiorgi ◽  
P. Matic ◽  
I. Bar-On ◽  
G.M.C. Lee
2000 ◽  
Vol 15 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Pär Wellmar ◽  
Øyvind Weiby Gregersen ◽  
Christer Fellers

Author(s):  
Thomas Willett ◽  
David Josey ◽  
Rick Xing Ze Lu ◽  
Gagan Minhas ◽  
John Montesano

2011 ◽  
Vol 284-286 ◽  
pp. 1266-1270
Author(s):  
M. Abdul Razzaq ◽  
Kamal A. Ariffin ◽  
Ahmed El Shafie ◽  
Shahrum Abdullah ◽  
Z. Sajuri ◽  
...  

Artificial intelligence (AI) techniques and in particular, adaptive neural networks (ANN) have been commonly used in order to Fatigue life prediction. The aim of this paper is to consider a new crack propagation principle based on simulating experimental tests on three point-bend (TPB) specimens, which allow predicting the fatigue life and fatigue crack growth rate (FCGR). An important part of this paper is estimation of FCG rate related to different load histories. The effects of different load histories on the crack growth life are obtained in different representative simulation and experiments.


Author(s):  
Claudio Ruggieri

This work addresses a two-parameter description of crack-tip fields in bend and tensile fracture specimens incorporating the evolution of near-tip stresses following stable crack growth with increased values of the J-integral. The primary objective is to examine the potential coupled effects of geometry and ductile tearing on crack-tip constraint as characterized by the J-Q theory which enables more accurate correlations of crack growth resistance behavior in conventional fracture specimens. Plane-strain, finite element computations including stationary and growth analyses are described for SE(B) and clamped SE(T) specimens having different notch depth to specimen width ratio in the range 0.2 ≤ a/W≤0.5. A computational cell methodology to model Mode I crack extension in ductile materials is utilized to describe the evolution of J with Δa for the fracture specimens. Laboratory testing of an API 5L X70 steel using deeply cracked C(T) specimens is used to measure the crack growth resistance curve for the material and to calibrate the cell parameters. The present results provide additional understanding of the effects of constraint on crack growth which contributes to further evaluation of crack growth resistance properties of pipeline steels using SE (T) and SE(B) specimens.


Sign in / Sign up

Export Citation Format

Share Document