Prediction of crack growth initiation in paper structures using a J-integral criterion

2000 ◽  
Vol 15 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Pär Wellmar ◽  
Øyvind Weiby Gregersen ◽  
Christer Fellers
1986 ◽  
Vol 59 (5) ◽  
pp. 787-799 ◽  
Author(s):  
R. F. Lee ◽  
J. A. Donovan

Abstract 1. Evaluation of ∫σdδ where σ is the net section stress and δ is the deformed crack tip diameter requires only one specimen to characterize the initiation of crack growth in unfilled and carbon-black-filled NR. 2. ∫σdδ is equal to one half of the J-integral for crack growth initiation, which is identical to the Thomas tearing energy for a blunt notch. 3. The critical J-integral for crack initiation increases linearly with carbon black content. 4. The critical crack tip radius for crack initiation is independent of carbon black content, and the required crack tip region stress increases linearly with carbon black content.


2006 ◽  
Vol 503-504 ◽  
pp. 811-816 ◽  
Author(s):  
Alexei Vinogradov ◽  
Kazuo Kitagawa ◽  
V.I. Kopylov

Anisotropy of mechanical properties, fatigue and fracture resistance of precipitation hardened CuCrZr alloy ultrafine (UFG) grained by equal-channel angular pressing (ECAP) is in focus of the present communication. Fracture toughness was estimated in terms of J-integral and the fatigue crack growth rate was quantified. It was found that although the estimated JIC-value appeared lower than that reported in the literature for a reference alloy, the ductility, fracture and crack growth resistance remained satisfactory after ECAP while the tensile strength and fatigue limit improved considerably. The stable crack growth rate did not differ very much for ECAP and reference conventional CuCrZr and no remarkable anisotropy in the stable crack growth was noticed.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 475
Author(s):  
Lukáš Trávníček ◽  
Ivo Kuběna ◽  
Veronika Mazánová ◽  
Tomáš Vojtek ◽  
Jaroslav Polák ◽  
...  

In this work two approaches to the description of short fatigue crack growth rate under large-scale yielding condition were comprehensively tested: (i) plastic component of the J-integral and (ii) Polák model of crack propagation. The ability to predict residual fatigue life of bodies with short initial cracks was studied for stainless steels Sanicro 25 and 304L. Despite their coarse microstructure and very different cyclic stress–strain response, the employed continuum mechanics models were found to give satisfactory results. Finite element modeling was used to determine the J-integrals and to simulate the evolution of crack front shapes, which corresponded to the real cracks observed on the fracture surfaces of the specimens. Residual fatigue lives estimated by these models were in good agreement with the number of cycles to failure of individual test specimens strained at various total strain amplitudes. Moreover, the crack growth rates of both investigated materials fell onto the same curve that was previously obtained for other steels with different properties. Such a “master curve” was achieved using the plastic part of J-integral and it has the potential of being an advantageous tool to model the fatigue crack propagation under large-scale yielding regime without a need of any additional experimental data.


Author(s):  
Thomas Willett ◽  
David Josey ◽  
Rick Xing Ze Lu ◽  
Gagan Minhas ◽  
John Montesano

Sign in / Sign up

Export Citation Format

Share Document