Prostaglandin E release by rat medial basal hypothalamus in vitro. Inhibition by melatonin at submicromolar concentrations

1980 ◽  
Vol 67 (1) ◽  
pp. 151-153 ◽  
Author(s):  
D.P. Cardinali ◽  
M.N. Ritta ◽  
A.M. Fuentes ◽  
M.F. Gimeno ◽  
A.L. Gimeno
1984 ◽  
Vol 1 (4) ◽  
pp. 317-321 ◽  
Author(s):  
Marek Pawlikowski ◽  
Marlena Juszczak ◽  
Ewa Karasek ◽  
Barbara Muszyǹska ◽  
Michal Karasek

1994 ◽  
Vol 111 (3) ◽  
pp. 189-196 ◽  
Author(s):  
C SNYDERMAN ◽  
I KLAPAN ◽  
M MILANOVICH ◽  
D HEO ◽  
R WAGNER ◽  
...  

2007 ◽  
Vol 45 (08) ◽  
Author(s):  
D Hagelauer ◽  
O Kelber ◽  
D Weiser ◽  
S Laufer ◽  
H Heinle

Digestion ◽  
1982 ◽  
Vol 24 (1) ◽  
pp. 54-59 ◽  
Author(s):  
G. Isaksson ◽  
I. Lundquist ◽  
I. Ihse

2021 ◽  
Author(s):  
Na Li ◽  
Zhen Wang ◽  
Rui Wang ◽  
Zhe-Rui Zhang ◽  
Ya-Nan Zhang ◽  
...  
Keyword(s):  

1988 ◽  
Vol 16 (1) ◽  
pp. 16-22
Author(s):  
Marina Marinovich ◽  
Jose L. Lorenzo ◽  
Liliana M. Flaminio ◽  
Agnese Granata ◽  
Corrado L. Galli

The hepatotoxicity of carbon tetrachloride (CC14) was evaluated in vitro in freshly isolated rat hepatocytes and in the human hepatoma cell line, Hep G2. Toxicity was assessed by the leakage of cytosolic enzymes (lactate dehydrogenase and aspartate aminotransferase) and cell viability (trypan blue exclusion). The established human cells were less sensitive to CCl4-induced injury; higher doses of the toxic agent and longer incubation times were necessary to elicit cell damage. Micromolar concentrations of prostaglandin E2 significantly decreased enzyme leakage in both Hep G2 cells and rat hepatocytes challenged with CC14; a stable derivative of prostacyclin (ZK 36374) was ineffective. These results suggest that human hepatoma Hep G2 cells may represent a valid alternative to isolated rat hepatocytes for an initial approach to the in vitro evaluation of cell toxicity.


2009 ◽  
Vol 27 (1) ◽  
pp. 30-34
Author(s):  
AR Shoae Hassani ◽  
N Ordouzadeh ◽  
A Ghaemi ◽  
N Amirmozafari ◽  
K Hamdi ◽  
...  

2004 ◽  
Vol 181 (3) ◽  
pp. 477-492 ◽  
Author(s):  
AA Fouladi Nashta ◽  
CV Andreu ◽  
N Nijjar ◽  
JK Heath ◽  
SJ Kimber

Decidualisation of uterine stromal cells is a prerequisite for implantation of the embryo in mice. Here we have used an in vitro culture system in which stromal cells decidualise as indicated by a number of markers, including an increase in alkaline phosphatase (ALP) activity. The latter was used as a quantitative marker of decidualisation in the presence of low (2%) fetal calf serum. Prostaglandin E(2) (PGE(2)), which is known to induce decidualisation, increased ALP activity, and this effect was blocked in a dose-dependent manner by indomethacin. Leukemia inhibitory factor (LIF) was then examined, but it had no effect on PGE(2) secretion. However, LIF suppressed ALP activity in a dose-dependent manner in the presence of 2% serum, while an inhibitor of LIF that competes for binding to its receptor reversed the effect of LIF and increased ALP activity above the control level. In serum-free cultures, stromal cells differentiated rapidly, and no differences were observed between LIF-treated and untreated cultures. Stromal cells produce LIF during in vitro culture, and this peaked at 48 h. Freshly collected stromal cells from both day-2 and -4 pregnant mice expressed mRNA for the LIF receptor, and the transcript level was higher in cells isolated on day 4. However, no differences were observed in the relative levels of transcripts in cells from day 2 and day 4 after culture, nor were there differences between the LIF-treated cultures and controls. Therefore, in this study, we have shown that LIF suppresses decidualisation of murine uterine stromal cells in the presence of serum, this is not due to the regulation of PGE(2) secretion by stromal cells.


Sign in / Sign up

Export Citation Format

Share Document