Patterns of excitatory and inhibitory synaptic transmission in the rat neostriatum as revealed by 4-AP

1994 ◽  
Vol 72 (5) ◽  
pp. 2246-2256 ◽  
Author(s):  
J. Flores-Hernandez ◽  
E. Galarraga ◽  
J. C. Pineda ◽  
J. Bargas

1. Synaptic potentials induced by 4-aminopyridine (4-AP) were recorded intracellularly from rat neostriatal neurons in an in vitro slice preparation. EC50 for this 4-AP action was approximately 120 microM. The threshold for activation of synaptic potentials was 5 microM. 2. 4-AP-induced synaptic potentials appeared stochastically. Most were blocked by 1 microM tetrodotoxin or 400 microM Cd2+. Therefore they reflect a release of neurotransmitters dependent on both Ca2+ entry to the terminals and action potential firing. 3. Bicuculline (BIC) (< or = 10 microM), a gamma-aminobuturic acid-A (GABAA) antagonist, blocked about half of the 4-AP-induced synaptic potentials. This suggests that intrinsic inhibitory connections within the neostriatum are activated by 4-AP administration. 4. 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; < or = 10 microM) plus D-2-amino-5-phosphonovaleric acid (D-APV; < or = 100 microM) blocked most of the BIC-resistant 4-AP-induced synaptic potentials. This suggests that 4-AP induced release of glutamate (GLU) from extrinsic glutamatergic afferents. As most glutamatergic afferents are extrinsic, these afferents then would be able to fire spikes and release transmitter for several hours after they are cut from their somata. 5. If CNQX plus D-APV were administered before BIC, neostriatal neurons responded in different ways. In one half of the neurons, all induced synaptic potentials were blocked. This suggests that most GABAergic intrinsic connections between neostriatal neurons are activated indirectly by 4-AP. 4-AP would first activate extrinsic glutamatergic afferents and these in turn would activate GABAergic intrinsic neurons and connections. 6. In the remaining half of the recorded neurons, administration of CNQX plus D-APV blocked most, but not all of the 4-AP-induced synaptic potentials. The synaptic potentials that remained had a characteristic pattern: they were high amplitude, rhythmic, bursts of synaptic potentials. They were blocked by BIC (5 microM) but not by mecamylamine (> 10 microM). This suggests that these bursts of synaptic potentials were GABAergic and generated by intrinsic neurons. Therefore these neurons would not innervate all neostriatal neurons equally but just a subset of them. 7. Records from an identified aspiny neostriatal interneuron, obtained from the same preparation, are shown. This interneuron fired in bursts and its morphologically and physiologically similar to the recently described, fast spiking, parvalbumin immunoreactive, GABAergic, aspiny interneuron is functional in the slice preparation.(ABSTRACT TRUNCATED AT 400 WORDS)

Author(s):  
Vincenzo Crunelli ◽  
Adam C. Errington ◽  
Stuart W. Hughes ◽  
Tibor I. Tóth

During non-rapid eye movement sleep and certain types of anaesthesia, neurons in the neocortex and thalamus exhibit a distinctive slow (<1 Hz) oscillation that consists of alternating UP and DOWN membrane potential states and which correlates with a pronounced slow (<1 Hz) rhythm in the electroencephalogram. While several studies have claimed that the slow oscillation is generated exclusively in neocortical networks and then transmitted to other brain areas, substantial evidence exists to suggest that the full expression of the slow oscillation in an intact thalamocortical (TC) network requires the balanced interaction of oscillator systems in both the neocortex and thalamus. Within such a scenario, we have previously argued that the powerful low-threshold Ca 2+ potential (LTCP)-mediated burst of action potentials that initiates the UP states in individual TC neurons may be a vital signal for instigating UP states in related cortical areas. To investigate these issues we constructed a computational model of the TC network which encompasses the important known aspects of the slow oscillation that have been garnered from earlier in vivo and in vitro experiments. Using this model we confirm that the overall expression of the slow oscillation is intricately reliant on intact connections between the thalamus and the cortex. In particular, we demonstrate that UP state-related LTCP-mediated bursts in TC neurons are proficient in triggering synchronous UP states in cortical networks, thereby bringing about a synchronous slow oscillation in the whole network. The importance of LTCP-mediated action potential bursts in the slow oscillation is also underlined by the observation that their associated dendritic Ca 2+ signals are the only ones that inform corticothalamic synapses of the TC neuron output, since they, but not those elicited by tonic action potential firing, reach the distal dendritic sites where these synapses are located.


2005 ◽  
Vol 93 (2) ◽  
pp. 843-852 ◽  
Author(s):  
Gergana Hadjilambreva ◽  
Eilhard Mix ◽  
Arndt Rolfs ◽  
Jana Müller ◽  
Ulf Strauss

The immunomodulatory cytokine interferon-β (IFN-β) is used in the treatment of autoimmune diseases such as multiple sclerosis. However, the effect of IFN-β on neuronal functions is currently unknown. Intracellular recordings were conducted on somatosensory neurons of neocortical layers 2/3 and 5 exposed to IFN-β. The excitability of neurons was increased by IFN-β (10–10,000 U/ml) in two kinetically distinct, putatively independent manners. First IFN-β reversibly influenced the subthreshold membrane response by raising the membrane resistance RM 2.5-fold and the membrane time constant τ 1.7-fold dose-dependently. The effect required permanent exposure to IFN-β and was reduced in magnitude if the extracellular K+ was lowered. However, the membrane response to IFN-β in the subthreshold range was prevented by ZD7288 (a specific blocker of Ih) but not by Ni2+, carbachol, or bicuculline, pointing to a dependence on an intact Ih. Second, IFN-β enhanced the rate of action potential firing. This effect was observed to develop for >1 h when the cell was exposed to IFN-β for 5 min or >5 min and showed no reversibility (≤210 min). Current-discharge ( F-I) curves revealed a shift (prevented by bicuculline) as well as an increase in slope (prevented by carbachol and Ni2+). Layer specificity was not observed with any of the described effects. In conclusion, IFN-β influences the neuronal excitability in neocortical pyramidal neurons in vitro, especially under conditions of slightly increased extracellular K+. Our blocker experiments indicate that changes in various ionic conductances with different voltage dependencies cause different IFN-β influences on sub- and suprathreshold behavior, suggesting a more general intracellular process induced by IFN-β.


2012 ◽  
Vol 302 (7) ◽  
pp. G740-G747 ◽  
Author(s):  
Galya R. Abdrakhmanova ◽  
Minho Kang ◽  
M. Imad Damaj ◽  
Hamid I. Akbarali

Recently, we reported that nicotine in vitro at a low 1-μM concentration suppresses hyperexcitability of colonic dorsal root ganglia (DRG; L1-L2) neurons in the dextran sodium sulfate (DSS)-induced mouse model of acute colonic inflammation ( 1 ). Here we show that multiple action potential firing in colonic DRG neurons persisted at least for 3 wk post-DSS administration while the inflammatory signs were diminished. Similar to that in DSS-induced acute colitis, bath-applied nicotine (1 μM) gradually reduced regenerative multiple-spike action potentials in colonic DRG neurons to a single action potential in 3 wk post-DSS neurons. Nicotine (1 μM) shifted the activation curve for tetrodotoxin (TTX)-resistant sodium currents in inflamed colonic DRG neurons (voltage of half-activation changed from −37 to −32 mV) but did not affect TTX-sensitive currents in control colonic DRG neurons. Further, subcutaneous nicotine administration (2 mg/kg b.i.d.) in DSS-treated C57Bl/J6 male mice resulted in suppression of hyperexcitability of colonic DRG (L1-L2) neurons and the number of abdominal constrictions in response to intraperitoneal injection of 0.6% acetic acid. Collectively, the data suggest that neuronal nicotinic acetylcholine receptor-mediated suppression of hyperexcitability of colonic DRG neurons attenuates reduction of visceral hypersensitivity in DSS mouse model of colonic inflammation.


1994 ◽  
Vol 72 (1) ◽  
pp. 131-138 ◽  
Author(s):  
R. Bianchi ◽  
R. K. Wong

1. Carbachol effects on CA3 hippocampal cells were studied in the absence of ionotropic glutamatergic and GABAergic transmission with intracellular and extracellular recordings from guinea pig septohippocampal slices. 2. In all experiments the perfusing solution contained ionotropic glutamate and gamma-aminobutyric acid (GABA) receptor blockers [6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10–20 microM), 3-((+/-)-2-carboxypiperazin-4-il)propyl-1-phosphonic acid (CPP, 10–20 microM), and picrotoxin (50 microM), respectively]. Under these conditions, the excitatory and early inhibitory postsynaptic potentials, evoked in CA3 pyramidal cells by mossy fiber stimulation before the addition of the blockers, were completely suppressed. 3. Carbachol (50 microM) introduced via bath perfusion or pulse application elicited a series of rhythmic bursts with overriding action potentials. Each rhythmic burst lasted up to 30 s and repeated at intervals of 0.7–6 min. Rhythmic bursts were blocked by atropine (1 microM). 4. At membrane potentials more depolarized than -70 mV, carbachol also elicited a sustained depolarization associated with an increase in membrane input resistance and action-potential firing. This response was blocked by atropine (1 microM). 5. Carbachol can induce both rhythmic bursts and sustained depolarizations in the same cell. Rhythmic bursts were elicited when the membrane potential of the cell was more hyperpolarized than -70 mV; sustained depolarizing responses were activated by carbachol when the cell membrane potential was more depolarized than -70 mV. 6. Extracellular field potential responses in the CA3 region occurred simultaneously with rhythmic bursts, indicating the synchronization of the event in the CA3 field. Dual intracellular recordings confirmed that rhythmic bursts occurred simultaneously in CA3 hippocampal pyramidal cells.(ABSTRACT TRUNCATED AT 250 WORDS)


2010 ◽  
Vol 107 (5) ◽  
pp. 2283-2288 ◽  
Author(s):  
William J. Brackenbury ◽  
Jeffrey D. Calhoun ◽  
Chunling Chen ◽  
Haruko Miyazaki ◽  
Nobuyuki Nukina ◽  
...  

Voltage-gated Na+ channel (VGSC) β1 subunits regulate cell–cell adhesion and channel activity in vitro. We previously showed that β1 promotes neurite outgrowth in cerebellar granule neurons (CGNs) via homophilic cell adhesion, fyn kinase, and contactin. Here we demonstrate that β1-mediated neurite outgrowth requires Na+ current (INa) mediated by Nav1.6. In addition, β1 is required for high-frequency action potential firing. Transient INa is unchanged in Scn1b (β1) null CGNs; however, the resurgent INa, thought to underlie high-frequency firing in Nav1.6-expressing cerebellar neurons, is reduced. The proportion of axon initial segments (AIS) expressing Nav1.6 is reduced in Scn1b null cerebellar neurons. In place of Nav1.6 at the AIS, we observed an increase in Nav1.1, whereas Nav1.2 was unchanged. This indicates that β1 is required for normal localization of Nav1.6 at the AIS during the postnatal developmental switch to Nav1.6-mediated high-frequency firing. In agreement with this, β1 is normally expressed with α subunits at the AIS of P14 CGNs. We propose reciprocity of function between β1 and Nav1.6 such that β1-mediated neurite outgrowth requires Nav1.6-mediated INa, and Nav1.6 localization and consequent high-frequency firing require β1. We conclude that VGSC subunits function in macromolecular signaling complexes regulating both neuronal excitability and migration during cerebellar development.


2019 ◽  
Author(s):  
Mattia L. DiFrancesco ◽  
Francesco Lodola ◽  
Elisabetta Colombo ◽  
Luca Maragliano ◽  
Giuseppe M. Paternò ◽  
...  

ABSTRACTOptical technologies allowing modulation of neuronal activity at high spatio-temporal resolution are becoming paramount in neuroscience. We engineered novel light-sensitive molecules by adding polar groups to a hydrophobic backbone containing azobenzene and azepane moieties. We demonstrate that the probes stably partition into the plasma membrane, with affinity for lipid rafts, and cause thinning of the bilayer through their trans-dimerization in the dark. In neurons pulse-labeled with the compound, light induces a transient hyperpolarization followed by a delayed depolarization that triggers action potential firing. The fast hyperpolarization is attributable to a light-dependent decrease in capacitance due to membrane relaxation that follows disruption of the azobenzene dimers. The physiological effects are persistent and can be evoked in vivo after labeling the mouse somatosensory cortex. These data demonstrate the possibility to trigger neural activity in vitro and in vivo by modulating membrane capacitance, without directly affecting ion channels or local temperature.


2003 ◽  
Vol 89 (3) ◽  
pp. 1713-1717 ◽  
Author(s):  
I. M. Stanford

In vivo, neurons of the globus pallidus (GP) and subthalamic nucleus (STN) resonate independently around 70 Hz. However, on the loss of dopamine as in Parkinson's disease, there is a switch to a lower frequency of firing with increased bursting and synchronization of activity. In vitro, type A neurons of the GP, identified by the presence of Ih and rebound depolarizations, fire at frequencies (≤80 Hz) in response to glutamate pressure ejection, designed to mimic STN input. The profile of this frequency response was unaltered by bath application of the GABAA antagonist bicuculline (10 μM), indicating the lack of involvement of a local GABA neuronal network, while cross-correlations of neuronal pairs revealed uncorrelated activity or phase-locked activity with a variable phase delay, consistent with each GP neuron acting as an independent oscillator. This autonomy of firing appears to arise due to the presence of intrinsic voltage- and sodium-dependent subthreshold membrane oscillations. GABAA inhibitory postsynaptic potentials are able to disrupt this tonic activity while promoting a rebound depolarization and action potential firing. This rebound is able to reset the phase of the intrinsic oscillation and provides a mechanism for promoting coherent firing activity in ensembles of GP neurons that may ultimately lead to abnormal and pathological disorders of movement.


Sign in / Sign up

Export Citation Format

Share Document