On the fidelity of in vitro polynucleotide synthesis by E. Coli RNA polymerase

FEBS Letters ◽  
1974 ◽  
Vol 48 (2) ◽  
pp. 306-309 ◽  
Author(s):  
I.A. Bass ◽  
Ju.S. Polonsky
Keyword(s):  
2020 ◽  
Vol 117 (7) ◽  
pp. 3560-3567 ◽  
Author(s):  
Daniel J. Luciano ◽  
Joel G. Belasco

Stresses that increase the cellular concentration of dinucleoside tetraphosphates (Np4Ns) have recently been shown to impact RNA degradation by inducing nucleoside tetraphosphate (Np4) capping of bacterial transcripts. However, neither the mechanism by which such caps are acquired nor the function of Np4Ns in bacteria is known. Here we report that promoter sequence changes upstream of the site of transcription initiation similarly affect both the efficiency with which Escherichia coli RNA polymerase incorporates dinucleoside polyphosphates at the 5′ end of nascent transcripts in vitro and the percentage of transcripts that are Np4-capped in E. coli, clear evidence for Np4 cap acquisition by Np4N incorporation during transcription initiation in bacterial cells. E. coli RNA polymerase initiates transcription more efficiently with Np4As than with ATP, particularly when the coding strand nucleotide that immediately precedes the initiation site is a purine. Together, these findings indicate that Np4Ns function in bacteria as precursors to Np4 caps and that RNA polymerase has evolved a predilection for synthesizing capped RNA whenever such precursors are abundant.


1992 ◽  
Vol 70 (8) ◽  
pp. 698-702 ◽  
Author(s):  
Elana Swartzman ◽  
Edward A. Meighen

RNA polymerase was purified from Vibrio harveyi and found to contain polypeptides (β,β′, α, and σ) closely corresponding to those of the Escherichia coli enzyme. In vitro transcription studies using V. harveyi and E. coli RNA polymerase demonstrated that the purified V. harveyi RNA polymerase is functional and that the two enzymes have the same promoter specificity. Chromatography through a monoQ column was required to remove a 100-kilodalton protein that was present in large amounts and copurified with the RNA polymerase. N-terminal amino acid sequencing showed that the first 18 amino acids of the 100-kilodalton protein shares 78% sequence identity with the A subunit of gyrase or topoisomerase II. The abundance of the gyrase A protein is unprecedented and may be linked to bioluminescence.Key words: Vibrio harveyi, RNA polymerase, gyrase, bioluminescence.


Nature ◽  
1969 ◽  
Vol 224 (5224) ◽  
pp. 1105-1105 ◽  
Author(s):  
OSCAR GRAU ◽  
ARABINDA GUHA ◽  
E. PETER GEIDUSCHEK ◽  
WACLAW SZYBALSKI

2001 ◽  
Vol 183 (7) ◽  
pp. 2289-2297 ◽  
Author(s):  
Marco P. Cicero ◽  
Meghan M. Sharp ◽  
Carol A. Gross ◽  
Kenneth N. Kreuzer

ABSTRACT Bacteriophage T4 middle-mode transcription requires two phage-encoded proteins, the MotA transcription factor and AsiA coactivator, along with Escherichia coli RNA polymerase holoenzyme containing the ς70 subunit. AmotA positive control (pc) mutant, motA-pc1, was used to select for suppressor mutations that alter other proteins in the transcription complex. Separate genetic selections isolated two AsiA mutants (S22F and Q51E) and five ς70 mutants (Y571C, Y571H, D570N, L595P, and S604P). All seven suppressor mutants gave partial suppressor phenotypes in vivo as judged by plaque morphology and burst size measurements. The S22F mutant AsiA protein and glutathione S-transferase fusions of the five mutant ς70 proteins were purified. All of these mutant proteins allowed normal levels of in vitro transcription when tested with wild-type MotA protein, but they failed to suppress the mutant MotA-pc1 protein in the same assay. The ς70 substitutions affected the 4.2 region, which binds the −35 sequence of E. coli promoters. In the presence of E. coli RNA polymerase without T4 proteins, the L595P and S604P substitutions greatly decreased transcription from standard E. colipromoters. This defect could not be explained solely by a disruption in −35 recognition since similar results were obtained with extended −10 promoters. The generalized transcriptional defect of these two mutants correlated with a defect in binding to core RNA polymerase, as judged by immunoprecipitation analysis. The L595P mutant, which was the most defective for in vitro transcription, failed to support E. coli growth.


1969 ◽  
Vol 115 (3) ◽  
pp. 353-361 ◽  
Author(s):  
John O. Bishop ◽  
Forbes W. Robertson

1. RNA was synthesized in vitro from a template of bacteriophage T4 DNA, in the presence of Mn2+. A comparison was made of the RNA synthesized by purified RNA polymerase from two sources, Micrococcus lysodeikticus and Escherichia coli; these are referred to as Micrococcus cRNA and E. coli cRNA respectively (where cRNA indicates RNA synthesized in vitro by using purified RNA polymerase and a DNA primer). 2. Both types of RNA were self-complementary as judged by resistance to digestion with ribonuclease after self-annealing, Micrococcus cRNA being more self-complementary (40%) than was E. coli cRNA (30%). The cRNA was found to be much less self-complementary if Mg2+ was present during RNA synthesis instead of Mn2+. 3. Micrococcus cRNA hybridized with a larger part of bacteriophage T4 DNA than did E. coli cRNA. The E. coli cRNA competed with only part (70%) of the Micrococcus cRNA in hybridization-competition experiments. It is concluded that more sequences of bacteriophage T4 DNA are transcribed by Micrococcus polymerase than by E. coli polymerase. 4. The RNA sequences synthesized by Micrococcus RNA polymerase but not by E. coli RNA polymerase are shown by hybridization competition to compete with specifically late bacteriophage T4 messenger RNA sequences. The relevance of this finding to the control of transcription is discussed. 5. In an Appendix, new methods are described for the analysis of hybridization-saturation and -competition experiments. Particular attention is paid to the effects produced if different RNA sequences are present at different relative concentrations. 6. By using cRNA isolated from an enzymically synthesized DNA–RNA hybrid, it is estimated that, of the DNA that is complementary to cRNA, only about half can become hybridized with cRNA under the experimental conditions used.


2000 ◽  
Vol 182 (18) ◽  
pp. 5167-5171 ◽  
Author(s):  
Chris S. Schaumburg ◽  
Ming Tan

ABSTRACT The spacer A/T region is a positive cis-acting DNA element that was identified in the Chlamydia trachomatisrRNA promoter region. We have now demonstrated that similar sequences in other chlamydial promoters are important for transcription. Substitution of candidate spacer A/T regions in four chlamydial promoters decreased transcription by partially purified C. trachomatis RNA polymerase in an in vitro transcription assay. Addition of a spacer A/T region to the dnaK promoter, which does not contain an identifiable spacer A/T region, increased transcription 16-fold. Transcription of Escherichia colipromoters by C. trachomatis RNA polymerase also appeared to be dependent on the spacer A/T region. However, the effect of the spacer A/T region on transcription by E. coli RNA polymerase was small. In summary, the spacer A/T region is a novel DNA element that is required for high-level transcription of many promoters by chlamydial RNA polymerase.


2020 ◽  
Author(s):  
Zhe Sun ◽  
Alexander Yakhnin ◽  
Peter C. FitzGerald ◽  
Carl E. Mclntosh ◽  
Mikhail Kashlev

ABSTRACTPromoter-proximal pausing regulates expression of many eukaryotic genes and serves as checkpoints for assembly of elongation/splicing machinery. Little is known how broadly the pausing is employed in transcriptional regulation in bacteria. We applied NET-seq combined with RNase I footprinting for genome-wide analysis of σ70-dependent transcription pauses in Escherichia coli. Many E. coli genes appear to contain clusters of strong backtracked pauses at 10-20-bp distance from the transcription start site caused by retention of σ70 subunit in RNA polymerase. The pauses in 10-15-bp register of the promoter are dictated by binding of σ70 to canonical −10 element, 6-7 nt spacer and “YR+1Y” motif centered at transcription start site all characteristic for strong E. coli promoters. The promoters for the pauses in 16-20-bp register contain an additional −10-like sequence positioned on the same face of the DNA duplex as the original −10 element suggesting that σ70 hopping was responsible for these pauses. Our in vitro analysis reveals that RNA polymerase backtracking and DNA scrunching are involved in these pauses that are relieved by Gre transcript cleavage factors. The genes coding for transcription factors are enriched in these pauses suggesting that σ70 and Gre proteins regulate transcription in response to changing environmental cues.


1998 ◽  
Vol 180 (9) ◽  
pp. 2359-2366 ◽  
Author(s):  
Ming Tan ◽  
Tamas Gaal ◽  
Richard L. Gourse ◽  
Joanne N. Engel

ABSTRACT We have characterized the Chlamydia trachomatisribosomal promoter, rRNA P1, by measuring the effect of substitutions and deletions on in vitro transcription with partially purifiedC. trachomatis RNA polymerase. Our analyses indicate that rRNA P1 contains potential −10 and −35 elements, analogous toEscherichia coli promoters recognized by E-ς70. We identified a novel AT-rich region immediately downstream of the −35 region. The effect of this region was specific for C. trachomatis RNA polymerase and strongly attenuated by single G or C substitutions. Upstream of the −35 region was an AT-rich sequence that enhanced transcription by C. trachomatis and E. coli RNA polymerases. We propose that this region functions as an UP element.


2006 ◽  
Vol 188 (13) ◽  
pp. 4681-4689 ◽  
Author(s):  
Gianni Prosseda ◽  
Maria Carmela Latella ◽  
Mariassunta Casalino ◽  
Mauro Nicoletti ◽  
Stefano Michienzi ◽  
...  

ABSTRACT We describe identification and functional characterization of ISEc11, a new insertion sequence that is widespread in enteroinvasive E. coli (EIEC), in which it is always present on the virulence plasmid (pINV) and very frequently also present on the chromosome. ISEc11 is flanked by subterminal 13-bp inverted repeats (IRs) and is bounded by 3-bp terminal sequences, and it transposes with target specificity without generating duplication of the target site. ISEc11 is characterized by an atypical transposase containing the DEDD motif of the Piv/MooV family of DNA recombinases, and it is closely related to the IS1111 family. Transposition occurs by formation of minicircles through joining of the abutted ends and results in assembly of a junction promoter (PjuncC) containing a −10 box in the interstitial sequence and a −35 box upstream of the right IR. A natural variant of ISEc11 (ISEc11p), found on EIEC pINV plasmids, contains a perfect duplication of the outermost 39 bp of the right end. Upon circularization, ISEc11p forms a junction promoter (PjuncP) which, despite carrying −10 and −35 boxes identical to those of PjuncC, exhibits 30-fold-greater strength in vivo. The discovery of only one starting point in primer extension experiments rules out the possibility that there are alternative promoter sites within the 39-bp duplication. Analysis of in vitro-generated transcripts confirmed that at limiting RNA polymerase concentrations, the activity of PjuncP is 20-fold higher than the activity of PjuncC. These observations suggest that the 39-bp duplication might host cis-acting elements that facilitate the binding of RNA polymerase to the promoter.


2008 ◽  
Vol 190 (10) ◽  
pp. 3434-3443 ◽  
Author(s):  
Umender K. Sharma ◽  
Dipankar Chatterji

ABSTRACT Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, σ70, of E. coli. Though both factors are known to interact with the C-terminal region of σ70, the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to σ70 with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with σ70 studied by using the yeast two-hybrid system revealed that region 4 of σ70 is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of σ70 as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to σ70.


Sign in / Sign up

Export Citation Format

Share Document