Induction of hyaluronic acid synthesis in teratocarcinoma stem cells by retinoic acid

FEBS Letters ◽  
1980 ◽  
Vol 111 (2) ◽  
pp. 295-298 ◽  
Author(s):  
Peter Prehm
Cosmetics ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 33
Author(s):  
Cátia Gomes ◽  
Ana Catarina Silva ◽  
Ana Camila Marques ◽  
José Sousa Lobo ◽  
Maria Helena Amaral

Biotechnology uses microorganisms and/or enzymes to obtain specific products through fermentative processes and/or genetic engineering techniques. Examples of these products are active ingredients, such as hyaluronic acid, kojic acid, resveratrol, and some enzymes, which are used in skin anti-aging products. In addition, certain growth factors, algae, stem cells, and peptides have been included in cosmetics and aesthetic medicines. Thus, biotechnology, cosmetics and aesthetic medicines are now closely linked, through the production of high-quality active ingredients, which are more effective and safer. This work describes the most used active ingredients that are produced from biotechnological processes. Although there are a vast number of active ingredients, the number of biotechnological active ingredients reported in the literature is not significantly high.


2021 ◽  
pp. 109158182110024
Author(s):  
Maryam Shahi ◽  
Daruosh Mohammadnejad ◽  
Mohammad Karimipour ◽  
Reza Rahbarghazi ◽  
Ali Abedelahi

One of the most important natural extracellular constituents is hyaluronic acid (HA) with the potential to develop a highly organized microenvironment. In the present study, we enriched HA hydrogel with tenascin-C (TN-C) and examined the viability and survival of mouse neural stem cells (NSCs) using different biological assays. Following NSCs isolation and expansion, their phenotype was identified using flow cytometry analysis. Cell survival was measured using MTT assay and DAPI staining after exposure to various concentrations of 50, 100, 200, and 400 nM TN-C. Using acridine orange/ethidium bromide staining, we measured the number of live and necrotic cells after exposure to the combination of HA and TN-C. MTT assay revealed the highest NSCs viability rate in the group exposed to 100 nM TN-C compared to other groups, and a combination of 1% HA + 100 nM TN-C increased the viability of NSCs compared to the HA group after 24 hours. Electron scanning microscopy revealed the higher attachment of these cells to the HA + 100 nM TN-C substrate relative to the HA substrate. Epifluorescence imaging and DAPI staining of loaded cells on HA + 100 nM TN-C substrate significantly increased the number of NSCs per field over 72 hours compared to the HA group ( P < 0.05). Live and dead assay revealed that the number of live NSCs significantly increased in the HA + 100 TN-C group compared to HA and control groups. The enrichment of HA substrate with TN-C promoted viability and survival of NSCs and could be applied in neural tissue engineering approaches and regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document