Effects of temperature and humidity on the growth and optical properties of sulphuric acid—water droplets in the stratosphere

1981 ◽  
Vol 12 (6) ◽  
pp. 517-528 ◽  
Author(s):  
Helen M Steele ◽  
Patrick Hamill
Parasitology ◽  
1963 ◽  
Vol 53 (3-4) ◽  
pp. 469-481 ◽  
Author(s):  
J. H. Rose

Outdoor observations were made on the rate of development of the free-living stages of H. contortus at different times of the year, and on the migratory activities and longevity of the larvae in faeces, on herbage and in soil.The effects of temperature and humidity on the survival and development of eggs and larvae, both in faeces and when separated from the faeces, were studied in the laboratory.The results of these observations are discussed in relation to the heavy mortality of the free-living stages of H. contortus and to the transmission of infection in the field.


2020 ◽  
Author(s):  
Lei Qin ◽  
Qiang Sun ◽  
Jiani Shao ◽  
Yang Chen ◽  
Xiaomei Zhang ◽  
...  

Abstract Background: The effects of temperature and humidity on the epidemic growth of coronavirus disease 2019 (COVID-19)remains unclear.Methods: Daily scatter plots between the epidemic growth rate (GR) and average temperature (AT) or average relative humidity (ARH) were presented with curve fitting through the “loess” method. The heterogeneity across days and provinces were calculated to assess the necessity of using a longitudinal model. Fixed effect models with polynomial terms were developed to quantify the relationship between variations in the GR and AT or ARH.Results: An increased AT dramatically reduced the GR when the AT was lower than −5°C, the GR was moderately reduced when the AT ranged from −5°C to 15°C, and the GR increased when the AT exceeded 15°C. An increasedARH increased theGR when the ARH was lower than 72% and reduced theGR when the ARH exceeded 72%.Conclusions: High temperatures and low humidity may reduce the GR of the COVID-19 epidemic. The temperature and humidity curves were not linearly associated with the COVID-19 GR.


1947 ◽  
Vol 24 (1-2) ◽  
pp. 79-94
Author(s):  
L. E. S. EASTHAM ◽  
F. SEGROVE

1. The effects of temperature and humidity on the duration of each instar of the life cycle of Calandra granaria Linn. have been examined. The insects were reared at temperatures ranging from 15 to 30° C. and at atmospheric humidities ranging from 40 to 80% R.H. 2. A method is described for assessing the effect of temperature as an independent factor. 3. The temperatures employed fall within the ‘vital zone’. Extrapolation indicates the threshold temperature to be approximately 11° C. for the egg and larval instars though somewhat lower for the pupa. 30° C. is below the optimum temperature. 4. The durations of the egg and pupal stages are not affected by atmospheric humidity. 5. The duration of all larval instars is affected by moisture. It is suggested that this is largely due to atmospheric humidity and that food water is of little significance. 6. Shortage of moisture acts as an obstacle to development. Evidence is presented which indicates that drier atmospheres tend to desiccate the insect and that desiccation is responsible for retarded growth and development. 7. Since much earlier work on temperature and moisture has been done on fasting insects and, therefore, on insects deficient in one of the most important environmental factors, we suggest that our results, incomplete as they are, indicate the need for new approaches to be made. More complete data on feeding insects under controlled conditions of food, temperature and moisture are required, from which can be drawn up more complete balance sheets of development involving measurements of food utilization and respiratory rates.


Author(s):  
Gianluca Marcotullio ◽  
Miguel A. Tavares Cardoso ◽  
Wiebren De Jong ◽  
Ad H.M. Verkooijen

The interest for furfural has increased in the last years due to its potential for competing with oil derivatives as platform chemical. In addition, furfural, derived from C5 sugars, can play a key role in the valorization of the hemicellulose contained in biomass when considering the development of a modern biorefinery concept. The development of such new and competitive biorefinery processes must be based on accurate kinetic data for the reactions involving furfural in the conditions used for its production.This work addresses the determination of furfural destruction kinetics in aqueous acidic environment, using sulphuric acid as catalyst, in the temperature range 150 - 200°C, acid concentration range 36.4 - 145.5 mM and furfural initial concentration between 60.4 and 72.5 mM. These studies were carried out using a recently built lab-scale titanium reactor that enables liquid phase reactions in a relatively broad range of conditions.The obtained results show that destruction of furfural follows first-order reaction kinetics within the range of temperature and acid concentration evaluated. Moreover, the proposed kinetic model takes into account the effects of temperature and acid dilution on the ions activity, and thus H3O+, by using the electrolyte Non-Random Two-Liquid (eNRTL) model. By using this approach, the rate constant dependence on temperature could be described by the Arrhenius law and thus the activation energy could be estimated as being 125.1 [kJ/mol] and the pre-exponential factor 3.71•1011[s-1]. Separation of different reaction products was achieved by means of HPLC, these products were not yet completely identified. Contrarily to what is reported in previous works, formic acid formation from furfural under the tested conditions can be regarded as playing a far less pronounced role than suggested before.


Sign in / Sign up

Export Citation Format

Share Document