Asymptotic analysis of three-dimensional dynamic equations for thin two-layer elastic plates

1989 ◽  
Vol 53 (6) ◽  
pp. 772-778
Author(s):  
I.V. Simonov
AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 317-324 ◽  
Author(s):  
Zhen-Qiang Cheng ◽  
R. C. Batra

Author(s):  
Olivier Ozenda ◽  
Epifanio G. Virga

AbstractThe Kirchhoff-Love hypothesis expresses a kinematic constraint that is assumed to be valid for the deformations of a three-dimensional body when one of its dimensions is much smaller than the other two, as is the case for plates. This hypothesis has a long history checkered with the vicissitudes of life: even its paternity has been questioned, and recent rigorous dimension-reduction tools (based on standard $\varGamma $ Γ -convergence) have proven to be incompatible with it. We find that an appropriately revised version of the Kirchhoff-Love hypothesis is a valuable means to derive a two-dimensional variational model for elastic plates from a three-dimensional nonlinear free-energy functional. The bending energies thus obtained for a number of materials also show to contain measures of stretching of the plate’s mid surface (alongside the expected measures of bending). The incompatibility with standard $\varGamma $ Γ -convergence also appears to be removed in the cases where contact with that method and ours can be made.


2019 ◽  
Vol 968 ◽  
pp. 496-510
Author(s):  
Anatoly Grigorievich Zelensky

Classical and non-classical refined theories of plates and shells, based on various hypotheses [1-7], for a wide class of boundary problems, can not describe with sufficient accuracy the SSS of plates and shells. These are boundary problems in which the plates and shells undergo local and burst loads, have openings, sharp changes in mechanical and geometric parameters (MGP). The problem also applies to such elements of constructions that have a considerable thickness or large gradient of SSS variations. The above theories in such cases yield results that can differ significantly from those obtained in a three-dimensional formulation. According to the logic in such theories, the accuracy of solving boundary problems is limited by accepted hypotheses and it is impossible to improve the accuracy in principle. SSS components are usually depicted in the form of a small number of members. The systems of differential equations (DE) obtained here have basically a low order. On the other hand, the solution of boundary value problems for non-thin elastic plates and shells in a three-dimensional formulation [8] is associated with great mathematical difficulties. Only in limited cases, the three-dimensional problem of the theory of elasticity for plates and shells provides an opportunity to find an analytical solution. The complexity of the solution in the exact three-dimensional formulation is greatly enhanced if complex boundary conditions or physically nonlinear problems are considered. Theories in which hypotheses are not used, and SSS components are depicted in the form of infinite series in transverse coordinates, will be called mathematical. The approximation of the SSS component can be adopted in the form of various lines [9-16], and the construction of a three-dimensional problem to two-dimensional can be accomplished by various methods: projective [9, 14, 16], variational [12, 13, 15, 17]. The effectiveness and accuracy of one or another variant of mathematical theory (MT) depends on the complex methodology for obtaining the basic equations.


1959 ◽  
Vol 26 (3) ◽  
pp. 432-436
Author(s):  
B. E. Gatewood

Abstract The three-dimensional stresses in the plate are investigated without using the plane-stress or plane-strain assumptions, the thickness of the plate being limited so that the normal stress in the thickness direction can be taken as a polynomial in the thickness variable. The temperature is taken as a polynomial in the thickness variable but with relatively large, though restricted, gradients with respect to the co-ordinates of the plane of the plate. For the case of the temperature constant in thickness variable, the stresses in the plane of the plate are presented as the plane-stress solution plus correcting terms due to the plate thickness, where the correcting terms involve the product of the temperature gradient and the ratio of the plate thickness to the plate length in the direction of the temperature gradient. In many cases the corrections are small even for moderately thick plates.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Yi Zhu ◽  
Xin Chen ◽  
Chuntao Li

The problem of UAV trajectory tracking is a difficult issue for scholars and engineers, especially when the target curve is a complex curve in the three-dimensional space. In this paper, the coordinate frames during the tracking process are transformed to improve the tracking result. Firstly, the basic concepts of the moving frame are given. Secondly the transfer principles of various moving frames are formulated and the Bishop frame is selected as a final choice for its flexibility. Thirdly, the detailed dynamic equations of the moving frame tracking method are formulated. In simulation, a moving frame of an elliptic cylinder helix is formulated precisely. Then, the devised tracking method on the basis of the dynamic equations is tested in a complete flight control system with 6 DOF nonlinear equations of the UAV. The simulation result shows a satisfactory trajectory tracking performance so that the effectiveness and efficiency of the devised tracking method is proved.


Sign in / Sign up

Export Citation Format

Share Document