The motion of Taylor bubbles in vertical tubes. I. A numerical simulation for the shape and rise velocity of Taylor bubbles in stagnant and flowing liquid

1990 ◽  
Vol 91 (1) ◽  
pp. 132-160 ◽  
Author(s):  
Zai-Sha Mao ◽  
A.E Dukler
2021 ◽  
Vol 9 (2B) ◽  
Author(s):  
Marcos Bertrand De Azevedo

The present work reports an experimental study of developed liquid films falling around single Taylor bubbles inside vertical tubes containing stagnant liquids. Experiments were carried out in acrylic tubes with 2.0 m length and inner diameters of 0.019, 0.024 and 0.034 m. Five water-glycerin mixtures were used, corresponding to film Reynolds number(Ref)ranging from 2 to 7650. A pulse-echo ultrasonic technique was applied to measure the rise velocity of the bubble and the equilibrium thickness of the liquid film. These parameters together with the calculated standard deviation of the equilibrium film thickness provided information about the development of waves on the gas-liquid interfaces, which could be related with the laminar-turbulent transition of liquid films falling around Taylor bubbles. The results indicated that the wave amplitudes increased sharply for Ref> 1000. This value of Ref is in agreement with literature concerning the laminar-turbulent transition for free falling films on vertical surfaces.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
T. K. Mandal ◽  
G. Das ◽  
P. K. Das

It has been noted that a volume of lighter liquid when injected into a stationary column of a heavier liquid, it rises up as a simple elongated Taylor bubble. In the present study, experimental and theoretical analyses have been performed to understand the rise of liquid Taylor bubbles. The experiments have been performed with different liquid pairs with their viscosities ranging from 0.71mPas to 1.75mPas and conduit sizes ranging from 0.012 m to 0.0461 m. The bubble shape has been predicted using a potential flow analysis and validated from photographic measurements. This analysis has been further modified to predict the rise velocity. The modified analysis accounts for the density difference between the two liquids, viscosity effects of the primary liquid, and interfacial tension of two fluids. A semi-empirical equation has been developed, which gives satisfactory results for most of the cases.


1999 ◽  
Vol 25 (5) ◽  
pp. 815-819
Author(s):  
NOBUSUKE KOBAYASHI ◽  
RYOHEI YAMAZAKI ◽  
SHIGEKATSU MORI

2021 ◽  
Vol 932 ◽  
Author(s):  
Vikash Pandey ◽  
Dhrubaditya Mitra ◽  
Prasad Perlekar

We present a direct numerical simulation (DNS) study of buoyancy-driven bubbly flows in the presence of large-scale driving that generates turbulence. On increasing the turbulence intensity: (a) the bubble trajectories become more curved and (b) the average rise velocity of the bubbles decreases. We find that the energy spectrum of the flow shows a pseudo-turbulence scaling for length scales smaller than the bubble diameter and a Kolmogorov scaling for scales larger than the bubble diameter. We conduct a scale-by-scale energy budget analysis to understand the scaling behaviour observed in the spectrum. Although our bubbles are weakly buoyant, the statistical properties of our DNS are consistent with the experiments that investigate turbulence modulation by air bubbles in water.


Sign in / Sign up

Export Citation Format

Share Document