The induction time in the electrocrystallization of lead chloride and lead sulphate on an amalgamated lead electrode

1993 ◽  
Vol 131 (1-2) ◽  
pp. 115-123 ◽  
Author(s):  
Joan Torrent ◽  
Rafael Rodriguez ◽  
J.H. Sluyters
1981 ◽  
Vol 57 (9) ◽  
pp. 401-406 ◽  
Author(s):  
A. N. Hamir ◽  
N. D. Sullivan ◽  
P. D. Handson ◽  
J. S. Wilkinson ◽  
R. B. Lavelle

1991 ◽  
Vol 308 (1-2) ◽  
pp. 213-226 ◽  
Author(s):  
J. Torrent ◽  
W.S. Kruijt ◽  
M. Sluyters-Rehbach ◽  
J.H. Sluyters

2021 ◽  
Author(s):  
Ruth Ehiarinmwian ◽  
Gloria Omorowa OMOREGIE ◽  
Beckley Ikhajiagbe

The study was carried out to investigate the remediative capacity of Eleusine indica in lead-polluted soil. Soil samples were collected near student hostel (hall 5) in the University of Benin. The soil samples were sun dried to constant weight and was pulverized with wooden roller and sieved with a hand sieve of 2 mm mesh size. The sieved soil was spiked with 0.625 g lead nitrate (PbNO3), lead sulphate (PbSO4), lead carbonate (PbCO3), lead acetetrahydrate (PbC2H6) and lead chloride (PbCl2) separately in three replicate using aqueous standard solutions. Tillers of Eleusine Indica were placed in the metal polluted soil immediately and the experiment was allowed to stay for 15 weeks. The result showed that the uptake efficiency for Eleusine indica in both shoots and roots for lead nitrate was 0.016% and 0.8%, lead sulphate 0.016 % and 0.352 %, lead carbonate 0.064% and 0.496 %, lead acetetrahydrate 0.032 % and 0.688 %, and lead chloride 0.08 % and 0.72 % respectively, indicating that the plant might have sequestered the metal in the soil rather than accumulating it in the leaves. This was evident in the presentation of the metal sequestration factor of over 70 % irrespective of the nature of the metal. Microbial count of soil before and after contamination with lead nitrate was 19000 and 4000 cfu/g indicating a reduction. The study therefore revealed that Eleusine indica is a high efficient plant in sequestering lead in polluted soil.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1476
Author(s):  
Ana Cristina Ferrão ◽  
Raquel P. F. Guiné ◽  
Elsa Ramalhosa ◽  
Arminda Lopes ◽  
Cláudia Rodrigues ◽  
...  

Hazelnuts are one of the most appreciated nuts worldwide due to their unique organoleptic and nutritional characteristics. The present work intended to analyse several physical and chemical properties of different hazelnut varieties grown in Portugal, namely Tonda de Giffoni, Grada de Viseu, Segorbe, Longa de Espanha, Butler, Gunslebert, and Negreta. In general, the results revealed statistically significant differences between the varieties under study. The Gunslebert had more elongated hazelnuts and with heavier shelled fruits, while the kernels of the Grada de Viseu revealed to be heavier. Grada de Viseu was harder in the shell, Gunslebert had a harder core, and Segorbe was more resistant to fracture. Fat was the more representative component for all varieties and in some cases the values of moisture and water activity were over the recommended amount (≥0.62). Tonda de Giffoni was the variety with the highest induction time, indicating the highest oxidation stability. Moreover, discriminant analysis revealed that the variables more important to distinguish the varieties were protein (λ = 0.007) and water activity (λ = 0.010). The results of this study help to better understand the differences between some hazelnut varieties that are cultivated in Portugal, which gives important hints for all players in the hazelnut sector.


2015 ◽  
Vol 11 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Maher Trigui ◽  
Karim Gabsi ◽  
Walid Zneti ◽  
Suzelle Barrington ◽  
Ahmed Noureddine Helal

Abstract In this study, Bioconversion process of glucose to fructose from date syrup using Escherichia coli K12 is modeled using a commercial computational fluids dynamics (CFD) code fluent FLUENT 6.3.23 [8] which we implemented a user-defined functions (UDF) to simulate the interrelationships at play between various phases. A two phases CFD model was developed using an Eulerian – Eulerian approach to calculate the fructose volume fraction produced during time. The bioconversion process was studied as function of three initial concentration of glucose (0.14, 0.242 and 0.463gL–1), three induction time (60, 120 and 180 mn) and three inoculum volume (100, 120 and 150mL). The numerical results are compared with experimental data for bioconversion rate and show good agreement (R2= 0.894). The optimal condition of diffusion was obtained by applying an initial concentration of glucose less than 0.2gL–1 and induction time great than 100 minutes.


Sign in / Sign up

Export Citation Format

Share Document