inoculum volume
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 24)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
pp. 183
Author(s):  
Jefferson E. Contreras-Ropero ◽  
Silvia L. Ruiz-Roa ◽  
Janet B. García-Martínez ◽  
Néstor A. Urbina-Suarez ◽  
Germán L. López-Barrera ◽  
...  

The production of vaccines of biological origin presents a tremendous challenge for researchers. In this context, animal cell cultures are an excellent alternative for the isolation and production of biologicals against several viruses, since they have an affinity with viruses and a great capacity for their replicability. Different variables have been studied to know the system’s ideal parameters, allowing it to obtain profitable and competitive products. Consequently, this work focuses its efforts on evaluating an alternative for producing an anti-influenza biological from MDCK cells using SuperPro Designer v8.0 software. The process uses the DMEN culture medium supplemented with nutrients as raw material for cell development; the MDCK cells were obtained from a potential scale-up with a final working volume of 500 L, four days of residence time, inoculum volume of 10%, and continuous working mode with up to a total of 7400 h/Yr of work. The scheme has the necessary equipment for the vaccine’s production, infection, and manufacture with yields of up to 416,698 units/h. In addition, it was estimated to be economically viable to produce recombinant vaccines with competitive prices of up to 0.31 USD/unit.


2021 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Alicia Sada ◽  
Noor Erma Sugianto ◽  
Achmad Toto Poernomo

ackground Rhizopus oryzae FNCC 6078 had been evaluated producing fibrinolytic enzyme under solid state fermentation. Soybean had been used to produce fibrinolytic enzyme through fermentation in tempeh. The main purpose of this study was to reveal optimum condition for fermentation. The parameters of the condition were inoculum volume, incubation period and temperature. Optimum condition was defined by maximum fibrinolytic activity. Methode Fibrinolytic activity was measured using spectrophotometry at 274 nm. Result optimum condition for producing fibrinolytic enzyme was 1,5 mL volume of inoculum of Rhizopus oryzae suspension in 25%T, 42 hours for incubation period and 35oC temperature incubation.


Author(s):  
Jefferson Eduardo Contreras-Ropero ◽  
Silvia Liliana Ruiz-Roa ◽  
Janet B. García-Martínez ◽  
Néstor A. Urbina-Suarez ◽  
Germán L. López-Barrera ◽  
...  

The production of vaccines of biological origin presents a tremendous challenge for researchers. In this context, animal cell cultures are an excellent alternative for the isolation and production of biologicals against several viruses since they have an affinity with viruses and a great capacity for their replicability. Different variables have been studied to know the system's ideal parameters, allowing it to obtain profitable and competitive products. Consequently, this work focuses its efforts on evaluating an alternative for producing an anti-influenza biological from MDCK cells using SuperPro Designer v8.0 software. The process uses the DMEN culture medium supplemented with nutrients as raw material for cell development; the MDCK cells were obtained from a potential scale-up with a final working volume of 500 L, four days of residence time, inoculum volume of 10%, and continuous working mode with up to a total of 7400 h/Yr of work. The scheme has the necessary equipment for the vaccine's production, infection, and manufacture with yields of up to 416,698 units/h. In addition, it was estimated to be economically viable to produce recombinant vaccines with competitive prices of up to 0.31 USD/unit.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1903
Author(s):  
Ebrahim Saied ◽  
Amr Fouda ◽  
Ahmed M. Alemam ◽  
Mahmoud H. Sultan ◽  
Mohammed G. Barghoth ◽  
...  

Herein, bacterial isolate HIS7 was obtained from contaminated soil and exhibited high efficacy to degrade pyrethroid insecticide cypermethrin. The HIS7 isolate was identified as Lysinibacillus cresolivuorans based on its morphology and physiology characteristics as well as sequencing of 16S rRNA. The biodegradation percentages of 2500 ppm cypermethrin increased from 57.7% to 86.9% after optimizing the environmental factors at incubation condition (static), incubation period (8-days), temperature (35 °C), pH (7), inoculum volume (3%), and the addition of extra-carbon (glucose) and nitrogen source (NH4Cl2). In soil, L. cresolivuorans HIS7 exhibited a high potential to degrade cypermethrin, where the degradation percentage increased from 54.7 to 93.1% after 7 to 42 days, respectively. The qualitative analysis showed that the bacterial degradation of cypermethrin in the soil was time-dependent. The High-Performance Liquid Chromatography (HPLC) analysis of the soil extract showed one peak for control at retention time (R.T.) of 3.460 min and appeared three peaks after bacterial degradation at retention time (R.T.) of 2.510, 2.878, and 3.230 min. The Gas chromatography–mass spectrometry (GC–MS) analysis confirmed the successful degradation of cypermethrin by L. cresolivuorans in the soil. The toxicity of biodegraded products was assessed on the growth performance of Zea mays using seed germination and greenhouse experiment and in vitro cytotoxic effect against normal Vero cells. Data showed the toxicity of biodegraded products was noticeably decreased as compared with that of cypermethrin before degradation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Swati Sambita Mohanty ◽  
Arvind Kumar

AbstractThe current study describes the aerobic biodegradation of Indanthrene Blue RS dye by a microbial consortium immobilized on corn-cob biochar in a continuous up-flow packed bed bioreactor. The adsorption experiments were performed without microbes to monitor the adsorption effects on initial dye decolorization efficiency. The batch experiments were carried out to estimate the process parameters, and the optimal values of pH, temperature, and inoculum volume were identified as 10.0, 30 °C, and 3.0 × 106 CFU mL−1, respectively. During the continuous operation, the effect of flow rate, initial substrate concentration, inlet loading rate of Indanthrene Blue RS on the elimination capacity, and its removal efficiency in the bioreactor was studied. The continuous up-flow packed bed bioreactor was performed at different flow rates (0.25 to 1.25 L h−1) under the optimal parameters. The maximum removal efficiency of 90% was observed, with the loading rate varying between 100 and 300 mg L−1 day−1. The up-flow packed bed bioreactor used for this study was extremely useful in eliminating Indanthrene Blue RS dye using both the biosorption and biodegradation process. Therefore, it is a potential treatment strategy for detoxifying textile wastewater containing anthraquinone-based dyes.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2088
Author(s):  
Ioana M. Bodea ◽  
Florin I. Beteg ◽  
Carmen R. Pop ◽  
Adriana P. David ◽  
Mircea Cristian Dudescu ◽  
...  

Bacterial cellulose (BC) is a natural polymer with properties suitable for tissue engineering and possible applications in scaffold production. However, current procedures have limitations in obtaining BC pellicles with the desired structural, physical, and mechanical properties. Thus, this study analyzed the optimal culture conditions of BC membranes and two types of processing: draining and oven-drying. The aim was to obtain BC membranes with properties suitable for a wound dressing material. Two studies were carried out. In the preliminary study, the medium (100 mL) was inoculated with varying volumes (1, 2, 3, 4, and 5 mL) and incubated statically for different periods (3, 6, 9, 12, and 18 days), using a full factorial experimental design. Thickness, uniformity, weight, and yield were evaluated. In the optimization study, a Box–Behnken design was used. Two independent variables were used: inoculum volume (X1: 1, 3, and 5 mL) and fermentation period (X2: 6, 12, and 18 d) to determine the target response variables: thickness, swelling ratio, drug release, fiber diameter, tensile strength, and Young’s modulus for both dry and moist BC membranes. The mathematical modelling of the effect of the two independent variables was performed by response surface methodology (RSM). The obtained models were validated with new experimental values and confirmed for all tested properties, except Young’s modulus of oven-dried BC. Thus, the optimal properties in terms of a scaffold material of the moist BC were obtained with an inoculum volume of 5% (v/v) and 16 d of fermentation. While, for the oven-dried membranes, optimal properties were obtained with a 4% (v/v) and 14 d of fermentation.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1257
Author(s):  
Arjun Meda ◽  
Pritam Sangwan ◽  
Kiran Bala

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) a nitramine explosive, which has contaminated various military sites during its use, storage and manufacturing worldwide. As RDX is a recalcitrant, less soluble and toxic to human beings and other organisms, it is essential to remediate the contaminated sites. In the current investigation, authors have explored the potential of two indigenous microbes i.e., Bacillus toyonensis (isolate No. WS4-TSB-3, MTCC No. 12857) and Paenibacillus dendritiformis (isolate No. S10-TSA-3, MTCC No. 12859) isolated from an explosive manufacturing facility in north India, for the degradation of RDX in aqueous medium. Furthermore, RDX degradation has been optimized using response surface methodology (RSM) in a 15 days experiment at concentration of 20, 40, and 60 mg/L. It was found that various factors such as initial concentration of RDX, inoculum volume (2, 4 and 6%) and time (5, 10 and 15 days) had impact on transformation and degradation of contaminant. Samples were analyzed using high performance liquid chromatography (HPLC) and intermediate products were identified using LC-MS/MS. Maximum RDX removal of 81.6 ± 1.3 and 84.7 ± 0.9% for Bacillus toyonensis (isolate No. WS4-TSB-3) and Paenibacillus dendritiformis (isolate No. S10-TSA-3), respectively, was observed on 15th day at 40 mg/L initial concentration. During the degradation Hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), Hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), 4-Nitro-2,4-diazabutanal, Bis(hydroxymethyl)nitramine and nitrite were identified as intermediate products. The findings of the investigation suggest that both the microbes have the potential to degrade RDX in the aqueous medium and can be used for up-scaling the degradation of RDX on explosive contaminated sites.


2021 ◽  
Author(s):  
Swati Sambita Mohanty ◽  
Arvind Kumar

Abstract The current study describes the aerobic biodegradation of Indanthrene Blue RS dye by a microbial consortium immobilized on corn-cob biochar in a continuous up-flow packed bed bioreactor. The adsorption experiments were performed without microbes to monitor the adsorption effects on initial dye decolorization efficiency. The batch experiments were carried out to estimate the process parameters, and the optimal values of pH, temperature, and inoculum volume were identified to be 10.0, 30 ºC, and 3.0 × 106 CFU mL-1, respectively. During the continuous operation, the effect of flow rate, initial substrate concentration, inlet loading rate of Indanthrene Blue RS on the elimination capacity, and its removal efficiency in the bioreactor was studied. The continuous up-flow packed bed bioreactor was performed at different flow rates (0.25 to 1.25 L h-1) under the optimal parameters. The maximum removal efficiency of 90% was observed, with the loading rate varying between 100 to 300 mg L-1 d-1. The up-flow packed bed bioreactor used for this study was extremely useful in eliminating Indanthrene Blue RS dye using both the biosorption and biodegradation process. Therefore, it is a potential treatment strategy for detoxifying textile wastewater containing anthraquinone based dyes.


Author(s):  
Kira Schipper ◽  
Probir Das ◽  
Mariam Al Muraikhi ◽  
Mohammed AbdulQuadir ◽  
Mahmoud Ibrahim Thaher ◽  
...  

2021 ◽  
Author(s):  
Ioana Maria Bodea ◽  
Florin Ioan Beteg ◽  
Carmen Rodica Pop ◽  
Adriana Paula David ◽  
Mircea Cristian Dudescu ◽  
...  

Abstract Bacterial cellulose (BC) is a natural polymer with properties suitable for tissue engineering and possible applications in scaffold production. However, current procedures have limitations in obtaining BC pellicles with the desired structural, physical, and mechanical properties. Thus, this study analyzed the optimal culture conditions of BC membranes and 2 types of processing: draining and oven-drying. The aim was to obtain BC membranes with properties suitable for a wound dressing material. Two studies were carried out. In the preliminary study the medium (100 mL) was inoculated with varying volumes (1; 2; 3; 4; and 5 mL) and incubated statically for different periods (3; 6; 9; 12; and 18 days), using a full factorial experimental design. Thickness, uniformity, weight, and yield were evaluated. In the optimization study, a Box–Behnken design was used. Two independent variables were used: inoculum volume (X1: 1; 3; and 5 mL) and fermentation period (X2: 6; 12; and 18 d) to determine the target response variables: thickness, swelling ratio, drug release, fiber diameter, Tensile strength, and Young's Modulus for both dry and moist BC membranes. The mathematical modelling of the effect of the 2 independent variables was accomplished by response surface methodology (RSM). The obtained models were validated with new experimental values, and confirmed for all tested properties, except Young Modulus of oven-dried BC. Thus, the optimal properties in terms of a scaffold material of the moist BC were obtained with an inoculum volume of 5% (v/v) and 16 d of fermentation. While, for the oven-dried membranes a 4% (v/v) and 14 d of fermentation.


Sign in / Sign up

Export Citation Format

Share Document