Particle pushing: the attachment of particles on the solid-liquid interface during fluid flow

1994 ◽  
Vol 140 (3-4) ◽  
pp. 406-413 ◽  
Author(s):  
Q. Han ◽  
J.D. Hunt
2014 ◽  
Vol 783-786 ◽  
pp. 1513-1517 ◽  
Author(s):  
Meng Wang ◽  
Qin You Han

During the solidification of a liquid containing dispersed second phase particles, particles are either rejected or engulfed by the advancing solid-liquid interface. Theories have been proposed on the mechanisms on particle pushing by a freezing front. However, the critical growth velocities predicted are much smaller than actually found experimentally. This article evaluates mechanisms on particle pushing. A specially selected alloy system, an Al-Ti-B master alloy, was chosen to evaluate particle pushing under various solidification conditions. The final distribution of the particles in ingots was examined. It is concluded that most of the particles are pushed by the dendritic solid liquid interface under cooling conditions varying a few orders of magnitude. Mechanical disturbance, such as fluid flow in the remaining liquid of the mushy zone, promotes particle pushing by the growing solid. Keywords: Particle pushing, solidification, Aluminum alloys, and metal-matrix composites


Author(s):  
D. A. Sinton ◽  
B. R. Baliga

Computer simulations of fluid flow and heat transfer phenonmena in a continuous casting process with direct-chill (DC) boundary conditions are presented and discussed in this paper. The investigation is limited to a steady-state, two-dimensional axisymmetric system, used for DC continuous casting of a zero-freezing-range aluminum-magnesium alloy (A6063). An adaptive-grid numerical method is used in these simulations. The grid is designed to delineate the solid-liquid interface using a structured adaptation technique. The fluid flow and thermal fields are predicted using a control-volume finite element (CVFEM). Comparisons of the calculated solid-liquid interface geometries with those reported in earlier experimental and numerical studies are presented in this paper. In addition, the role of natural convection in this casting process is investigated and presented.


2020 ◽  
Vol 124 (5) ◽  
pp. 2987-2993
Author(s):  
Chi-Kuang Sun ◽  
Yi-Ting Yao ◽  
Chih-Chiang Shen ◽  
Mu-Han Ho ◽  
Tien-Chang Lu ◽  
...  

2005 ◽  
Vol 127 (9) ◽  
pp. 978-986 ◽  
Author(s):  
J. Choi ◽  
L. Han ◽  
Y. Hua

Laser aided Directed Material Deposition (DMD) is an additive manufacturing process based on laser cladding. A full understanding of laser cladding is essential in order to achieve a steady state and robust DMD process. A two dimensional mathematical model of laser cladding with droplet injection was developed to understand the influence of fluid flow on the mixing, dilution depth, and deposition dimension, while incorporating melting, solidification, and evaporation phenomena. The fluid flow in the melt pool that is driven by thermal capillary convection and an energy balance at the liquid–vapor and the solid–liquid interface was investigated and the impact of the droplets on the melt pool shape and ripple was also studied. Dynamic motion, development of melt pool and the formation of cladding layer were simulated. The simulated results for average surface roughness were compared with the experimental data and showed a comparable trend.


Sign in / Sign up

Export Citation Format

Share Document