Low temperature growth and plasma enhanced nitrogen doping of ZnSe by metalorganic vapour phase epitaxy

1994 ◽  
Vol 138 (1-4) ◽  
pp. 418-424 ◽  
Author(s):  
W. Taudt ◽  
A. Schneider ◽  
M. Heuken ◽  
Ch. Fricke ◽  
A. Hoffmann
1995 ◽  
Vol 182-184 ◽  
pp. 35-38 ◽  
Author(s):  
W. Taudt ◽  
B. Wachtendorf ◽  
H. Hamadeh ◽  
S. Lampe ◽  
A.L. Gurskii ◽  
...  

Author(s):  
A. Carlsson ◽  
J.-O. Malm ◽  
A. Gustafsson

In this study a quantum well/quantum wire (QW/QWR) structure grown on a grating of V-grooves has been characterized by a technique related to chemical lattice imaging. This technique makes it possible to extract quantitative information from high resolution images.The QW/QWR structure was grown on a GaAs substrate patterned with a grating of V-grooves. The growth rate was approximately three monolayers per second without growth interruption at the interfaces. On this substrate a barrier of nominally Al0.35 Ga0.65 As was deposited to a thickness of approximately 300 nm using metalorganic vapour phase epitaxy . On top of the Al0.35Ga0.65As barrier a 3.5 nm GaAs quantum well was deposited and to conclude the structure an additional approximate 300 nm Al0.35Ga0.65 As was deposited. The GaAs QW deposited in this manner turns out to be significantly thicker at the bottom of the grooves giving a QWR running along the grooves. During the growth of the barriers an approximately 30 nm wide Ga-rich region is formed at the bottom of the grooves giving a Ga-rich stripe extending from the bottom of each groove to the surface.


2021 ◽  
Vol 26 ◽  
pp. 102050
Author(s):  
Mehdi Dehghani ◽  
Ershad Parvazian ◽  
Nastaran Alamgir Tehrani ◽  
Nima Taghavinia ◽  
Mahmoud Samadpour

ACS Omega ◽  
2021 ◽  
Author(s):  
Muhammad Aniq Shazni Mohammad Haniff ◽  
Nur Hamizah Zainal Ariffin ◽  
Poh Choon Ooi ◽  
Mohd Farhanulhakim Mohd Razip Wee ◽  
Mohd Ambri Mohamed ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Koperski ◽  
K. Pakuła ◽  
K. Nogajewski ◽  
A. K. Dąbrowska ◽  
M. Tokarczyk ◽  
...  

AbstractWe demonstrate quantum emission capabilities from boron nitride structures which are relevant for practical applications and can be seamlessly integrated into a variety of heterostructures and devices. First, the optical properties of polycrystalline BN films grown by metalorganic vapour-phase epitaxy are inspected. We observe that these specimens display an antibunching in the second-order correlation functions, if the broadband background luminescence is properly controlled. Furthermore, the feasibility to use flexible and transparent substrates to support hBN crystals that host quantum emitters is explored. We characterise hBN powders deposited onto polydimethylsiloxane films, which display quantum emission characteristics in ambient environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document