The role of dambos in determining river flow regimes in Zimbabwe

1992 ◽  
Vol 134 (1-4) ◽  
pp. 349-372 ◽  
Author(s):  
Andrew Bullock
Keyword(s):  
2010 ◽  
Vol 4 (1) ◽  
pp. 115-128 ◽  
Author(s):  
R. J. Thayyen ◽  
J. T. Gergan

Abstract. A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April) and south-west monsoon in summer (June–September) dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007) is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is to augment stream runoff during the years of low summer discharge. This paper intends to highlight the importance of creating credible knowledge on the Himalayan cryospheric processes to develop a more representative global view on river flow response to cryospheric changes and locally sustainable water resources management strategies.


2009 ◽  
Vol 24 (5) ◽  
pp. 889-908 ◽  
Author(s):  
Yongyong Zhang ◽  
Jun Xia ◽  
Tao Liang ◽  
Quanxi Shao

2016 ◽  
Vol 17 (5) ◽  
pp. 1489-1516 ◽  
Author(s):  
Joel Arnault ◽  
Sven Wagner ◽  
Thomas Rummler ◽  
Benjamin Fersch ◽  
Jan Bliefernicht ◽  
...  

Abstract The analysis of land–atmosphere feedbacks requires detailed representation of land processes in atmospheric models. The focus here is on runoff–infiltration partitioning and resolved overland flow. In the standard version of WRF, runoff–infiltration partitioning is described as a purely vertical process. In WRF-Hydro, runoff is enhanced with lateral water flows. The study region is the Sissili catchment (12 800 km2) in West Africa, and the study period is from March 2003 to February 2004. The WRF setup here includes an outer and inner domain at 10- and 2-km resolution covering the West Africa and Sissili regions, respectively. In this WRF-Hydro setup, the inner domain is coupled with a subgrid at 500-m resolution to compute overland and river flow. Model results are compared with TRMM precipitation, model tree ensemble (MTE) evapotranspiration, Climate Change Initiative (CCI) soil moisture, CRU temperature, and streamflow observation. The role of runoff–infiltration partitioning and resolved overland flow on land–atmosphere feedbacks is addressed with a sensitivity analysis of WRF results to the runoff–infiltration partitioning parameter and a comparison between WRF and WRF-Hydro results, respectively. In the outer domain, precipitation is sensitive to runoff–infiltration partitioning at the scale of the Sissili area (~100 × 100 km2), but not of area A (500 × 2500 km2). In the inner domain, where precipitation patterns are mainly prescribed by lateral boundary conditions, sensitivity is small, but additionally resolved overland flow here clearly increases infiltration and evapotranspiration at the beginning of the wet season when soils are still dry. The WRF-Hydro setup presented here shows potential for joint atmospheric and terrestrial water balance studies and reproduces observed daily discharge with a Nash–Sutcliffe model efficiency coefficient of 0.43.


2013 ◽  
Vol 17 (1) ◽  
pp. 325-339 ◽  
Author(s):  
C. Schneider ◽  
C. L. R. Laizé ◽  
M. C. Acreman ◽  
M. Flörke

Abstract. Worldwide, flow regimes are being modified by various anthropogenic impacts and climate change induces an additional risk. Rising temperatures, declining snow cover and changing precipitation patterns will interact differently at different locations. Consequently, in distinct climate zones, unequal consequences can be expected in matters of water stress, flood risk, water quality, and food security. In particular, river ecosystems and their vital ecosystem services will be compromised as their species richness and composition have evolved over long time under natural flow conditions. This study aims at evaluating the exclusive impacts of climate change on river flow regimes in Europe. Various flow characteristics are taken into consideration and diverse dynamics are identified for each distinct climate zone in Europe. In order to simulate present-day natural flow regimes and future flow regimes under climate change, the global hydrology model WaterGAP3 is applied. All calculations for current and future conditions (2050s) are carried out on a 5' × 5' European grid. To address uncertainty, bias-corrected climate forcing data of three different global climate models are used to drive WaterGAP3. Finally, the hydrological alterations of different flow characteristics are quantified by the Indicators of Hydrological Alteration approach. Results of our analysis indicate that on the European scale, climate change can be expected to modify flow regimes remarkably. This is especially the case in the Mediterranean (due to drier conditions with reduced precipitation across the year) and in the boreal climate zone (due to reduced snowmelt, increased precipitation, and strong temperature rises). In the temperate climate zone, impacts increase from oceanic to continental. Regarding single flow characteristics, strongest impacts on timing were found for the boreal climate zone. This applies for both high and low flows. Flow magnitudes, in turn, will be predominantly altered in the Mediterranean but also in the Northern climates. At the end of this study, typical future flow regimes under climate change are illustrated for each climate zone.


2019 ◽  
Vol 18 (4) ◽  
pp. 384-392
Author(s):  
Hai Nguyen Tien ◽  
Dang Vu Hai ◽  
Phuc La The ◽  
Ha Nguyen Thai

On the basis of morphological characteristics and erosion - accumulation of sediment, it is possible to divide the stretch of the Gianh River from Co Cang to Cua Gianh (about 54km in length) into 3 sections as follows: Meandering channel (from Co Cang to Tien Xuan Isles): the length of the channel is 27.69km and the width of the channel is 80-250m. The channel is in the form of a meandering, narrow riverbed, flow plays a dominant role, deposition activities develop strongly at the convex side, while erosion occurs strongly in the concave side (cut side); Braided channel (from Tien Xuan Isles to Quang Phu): the length of the channel is 17.06km and the width of the channel is 800-2,200m. The channel is straight, the river bed is large and the depth of the river bed is 2-11m. Sedimentation occurs mainly at the bottom of the channel and creates bar in the middle of the channel; Straight channel (from Quang Phu to Cua Gianh): the length of the channel is 9.23km and the width of the channel is 800-1,000m. The channel is straight and the depth of the river bed is 8-12.5m. In addition to the role of river flow, it is strongly influenced by marine dynamics. The erosion and accretion activities occur mainly in estuaries. The results above show trend of river development: i) Meandering channel is the most vulnerable to changes for morphology of channel by erosion and accretion of sediment and can create 1-2 horseshoe pools by the river change line; ii) Braided channel mainly changes in the bottom of channel by the formation of channel bar; iii) Straight channel mainly changes in the estuary (the mouth of the river can be moved, enlarged or narrowed).


Sign in / Sign up

Export Citation Format

Share Document