Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa

2011 ◽  
Vol 98 (7) ◽  
pp. 1113-1124 ◽  
Author(s):  
Jafet C.M. Andersson ◽  
Alexander J.B. Zehnder ◽  
Johan Rockström ◽  
Hong Yang
2013 ◽  
Vol 47 (9) ◽  
pp. 4341-4348 ◽  
Author(s):  
Jafet C. M. Andersson ◽  
Alexander J. B. Zehnder ◽  
Bernhard Wehrli ◽  
Graham P. W. Jewitt ◽  
Karim C. Abbaspour ◽  
...  

2009 ◽  
Vol 24 (5) ◽  
pp. 889-908 ◽  
Author(s):  
Yongyong Zhang ◽  
Jun Xia ◽  
Tao Liang ◽  
Quanxi Shao

2009 ◽  
Vol 6 (4) ◽  
pp. 4919-4959 ◽  
Author(s):  
J. C. M. Andersson ◽  
A. J. B. Zehnder ◽  
G. P. W. Jewitt ◽  
H. Yang

Abstract. Water productivity in smallholder rain-fed agriculture is of key interest for food and livelihood security. A frequently advocated approach to enhance water productivity is to adopt water harvesting and conservation technologies (WH). This study estimates water availability for in situ WH and supplemental water demands (SWD) in smallholder agriculture in the Thukela River Basin, South Africa. It incorporates process dynamics governing runoff generation and crop water demands, an explicit account of the reliability of in situ WH, and uncertainty considerations. The agro-hydrological model SWAT (Soil and Water Assessment Tool) was calibrated and evaluated with the SUFI-2 algorithm against observed crop yield and discharge in the basin. The water availability was based on the generated surface runoff in smallholder areas. The SWD was derived from a scenario where crop water deficits were met from an unlimited external water source. The reliability was calculated as the percentage of years in which the water availability ≥ the SWD. It reflects the risks of failure induced by the temporal variability in these factors. The results show that the smallholder crop water productivity is low in the basin (spatiotemporal median: 0.08–0.22 kg m−3, 95% prediction uncertainty band (95PPU). Water is available for in situ WH (spatiotemporal median: 0–17 mm year−1, 95PPU) which may aid in enhancing the crop water productivity by meeting some of the SWD (spatiotemporal median: 0–113 mm year−1, 95PPU). However, the reliability of in situ WH is highly location specific and overall rather low. Of the 1850 km2 of smallholder lands, 20–28% display a reliability ≥25%, 13–16% a reliability ≥50%, and 4–5% a reliability ≥75% (95PPU). This suggests that the risk of failure of in situ WH is relatively high in many areas of the basin.


2018 ◽  
Vol 22 (3) ◽  
pp. 1735-1748 ◽  
Author(s):  
Juan Fernando Salazar ◽  
Juan Camilo Villegas ◽  
Angela María Rendón ◽  
Estiven Rodríguez ◽  
Isabel Hoyos ◽  
...  

Abstract. Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we introduce a novel physical interpretation of the scaling properties of river flows and show that it leads to a parsimonious characterization of the flow regime of any river basin. This allows river basins to be classified as regulated or unregulated, and to identify a critical threshold between these states. We applied this framework to the Amazon river basin and found both states among its main tributaries. Then we introduce the “forest reservoir” hypothesis to describe the natural capacity of river basins to regulate river flows through land–atmosphere interactions (mainly precipitation recycling) that depend strongly on the presence of forests. A critical implication is that forest loss can force the Amazonian river basins from regulated to unregulated states. Our results provide theoretical and applied foundations for predicting hydrological impacts of global change, including the detection of early-warning signals for critical transitions in river basins.


2017 ◽  
Author(s):  
Juan F. Salazar ◽  
Juan Camilo Villegas ◽  
Angela M. Rendón ◽  
Estiven Rodríguez ◽  
Isabel Hoyos ◽  
...  

Abstract. Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we introduce a novel physical interpretation of the scaling properties of river flows, and show that it leads to a parsimonious characterization of the flow regime of any river basin. This allows to classify river basins as regulated or unregulated, and to identify a critical threshold between these states. We applied this framework to the Amazon river basin and found both states among its main tributaries. Then we introduce the forest reservoir concept to explain how forest loss can force the Amazonian river basins from regulated to unregulated states. Our results provide theoretical and applied foundations for predicting hydrological impacts of global change, including the detection of early-warning signals for critical transitions in river basins.


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Raka Maulana ◽  
Yulianti Pratama ◽  
Lina Apriyanti

<p>Some areas in the city of Bandung is an area that dilitasi by the flow of the river, to prevent the introduction of garbage into the river basin is necessary to note the waste management systems in residential areas along the river. Cidurian river has a length of 24.86 Km along the river flow. Consists of the city of Bandung and Bandung regency. Administrative regions Cidurian River past eight (8) districts, from the region in the District Kiaracondong precisely Village Babakan Babakan Sari and Surabaya populous and the most densely populated. Thus, there should be community-based waste management in the form of a reduction in resources to prevent potential entry of waste into the river basin. Planning waste reduction will be divided into two, namely the reduction of inorganic waste with waste bank then the reduction of organic waste with absorption holes biopori, and bio reactor mini determination of the reduction is determined by the results of the analysis of the sampling covers the composition and garbage, then the result of the measurement characteristics test and analysis results questionnaire.</p>


Sign in / Sign up

Export Citation Format

Share Document