Groundwater pollution source characterization of an old landfill

1993 ◽  
Vol 142 (1-4) ◽  
pp. 349-371 ◽  
Author(s):  
Peter Kjeldsen
1998 ◽  
Vol 16 (1) ◽  
pp. 14-22 ◽  
Author(s):  
Peter Kjeldsen ◽  
Poul L. Bjerg ◽  
Kirsten Rügge ◽  
Thomas H. Christensen ◽  
Jørn K. Pedersen

2013 ◽  
Vol 68 (11) ◽  
pp. 2359-2366 ◽  
Author(s):  
Simin Jiang ◽  
Yali Zhang ◽  
Pei Wang ◽  
Maohui Zheng

The spatiotemporal characterization of unknown sources of groundwater pollution is frequently encountered in environmental problems. This study adopts a simulation–optimization approach that combines a contaminant transport simulation model with a heuristic harmony search algorithm to identify unknown pollution sources. In the proposed methodology, an almost-parameter-free harmony search algorithm is developed. The performance of this methodology is evaluated on an illustrative groundwater pollution source identification problem, and the identified results indicate that the proposed almost-parameter-free harmony search algorithm-based optimization model can give satisfactory estimations, even when the irregular geometry, erroneous monitoring data, and prior information shortage of potential locations are considered.


Author(s):  
Michael Saah Hayford ◽  
Bithin Datta

The most important first step in the management and remediation of contaminated groundwater aquifers is unknown contaminant source characterization. Often, the hydrogeological field data available for accurate source characterization are very sparse. In addition, hydrogeological and geochemical parameter estimates and field measurements are uncertain. Particularly in complex contaminated sites such as abandoned mine sites, the geochemical processes are very complex and identifying the sources of contamination in terms of location, magnitude, and duration, and determination of the pathways of pollution become very difficult. The reactive nature of the contaminant species makes the geochemical transport process very difficult to model and predict. Additionally, the source identification inverse problem is often non-unique and ill posed. This study is about developing and demonstrating a source characterization methodology for a complex contaminated aquifer with multiple reactive species. This study presents linked simulation optimization-based methodologies for characterization of unknown groundwater pollution source characteristics, i.e., location, magnitude and duration or timing. Optimization models are solved using an adaptive simulated annealing (ASA) optimization algorithm. The performance of the developed methodology is evaluated for different complex scenarios of groundwater pollution such as distributed mine waste dumps with reactive chemical species. The method is also applied to a real-life contaminated aquifer to demonstrate the potential applicability and optimal characterization results. The illustrative example site is a mine site in Northern Australia that is no longer active.


Fact Sheet ◽  
1997 ◽  
Author(s):  
Michael L. Pomes ◽  
W.R. Green ◽  
E.M. Thurman ◽  
W.H. Orem ◽  
H.T. Lerch

2021 ◽  
Vol 21 (8) ◽  
pp. 2299-2311
Author(s):  
Andrea Antonucci ◽  
Andrea Rovida ◽  
Vera D'Amico ◽  
Dario Albarello

Abstract. The geographic distribution of earthquake effects quantified in terms of macroseismic intensities, the so-called macroseismic field, provides basic information for several applications including source characterization of pre-instrumental earthquakes and risk analysis. Macroseismic fields of past earthquakes as inferred from historical documentation may present spatial gaps, due to the incompleteness of the available information. We present a probabilistic approach aimed at integrating incomplete intensity distributions by considering the Bayesian combination of estimates provided by intensity prediction equations (IPEs) and data documented at nearby localities, accounting for the relevant uncertainties and the discrete and ordinal nature of intensity values. The performance of the proposed methodology is tested at 28 Italian localities with long and rich seismic histories and for two well-known strong earthquakes (i.e., 1980 southern Italy and 2009 central Italy events). A possible application of the approach is also illustrated relative to a 16th-century earthquake in the northern Apennines.


2018 ◽  
Vol 19 (1) ◽  
pp. 137-146 ◽  
Author(s):  
Xuemin Xia ◽  
Simin Jiang ◽  
Nianqing Zhou ◽  
Xianwen Li ◽  
Lichun Wang

Abstract Groundwater pollution has been a major concern for human beings, since it is inherently related to people's health and fitness and the ecological environment. To improve the identification of groundwater pollution, many optimization approaches have been developed. Among them, the genetic algorithm (GA) is widely used with its performance depending on the hyper-parameters. In this study, a simulation–optimization approach, i.e., a transport simulation model with a genetic optimization algorithm, was utilized to determine the pollutant source fluxes. We proposed a robust method for tuning the hyper-parameters based on Taguchi experimental design to optimize the performance of the GA. The effectiveness of the method was tested on an irregular geometry and heterogeneous porous media considering steady-state flow and transient transport conditions. Compared with traditional GA with default hyper-parameters, our proposed hyper-parameter tuning method is able to provide appropriate parameters for running the GA, and can more efficiently identify groundwater pollution.


Sign in / Sign up

Export Citation Format

Share Document