The moment equations for three-group systems

1981 ◽  
Vol 43 (1) ◽  
pp. 40-48
Author(s):  
P.L Corio ◽  
M.L Trover
Keyword(s):  
1979 ◽  
Vol 22 (1) ◽  
pp. 85-96
Author(s):  
Joseph E. Willett ◽  
Sinan Bilikmen ◽  
Behrooz Maraghechi

The stimulated backscattering of electromagnetic ordinary waves from extraordinary waves propagating normal to a magnetic field in a plasma of finite length is studied. A pair of coupled differential equations for the amplitudes of the backscattered and scatterer waves is derived from Maxwell's equations and the moment equations for an inhomogeneous magnetized plasma. Solution of the coupled equations for a homogeneous plasma yields an expression for the growth rate of the absolute instability as a function of plasma length and damping rates of the product waves. The convective regime in which only spatial amplification occurs is discussed. A numerical study of the effects of the magnetic field on Raman and Brillouin backscattering is presented.


1972 ◽  
Vol 39 (3) ◽  
pp. 667-672 ◽  
Author(s):  
J. P. Lamb ◽  
L. J. Hesler ◽  
J. H. Smith

Computation of nonequilibrium compressible turbulent boundary layers using Coles’ three-parameter representation for the layer (cf, δ, Π) is discussed. Governing equations include momentum integral, skin friction, and an integral moment equation. It is shown that the hypothetical equilibrium layer concept employed by Alber to determine the dissipation integral of the mechanical energy equation can be utilized to estimate similar auxiliary parameters in the entrainment and moment-of-momentum integral equations. A series of comparisons of experimental data and predictions, using each of the moment equations shows that all combinations yield very similar results which are in general agreement with measurements. Some sensitivity to starting conditions was observed with the moment-of-momentum and entrainment relations.


2004 ◽  
Vol 31 (2) ◽  
pp. 281-291 ◽  
Author(s):  
Dong-Ho Choi ◽  
Gi-Nam Kim ◽  
Peter M Byrne

This paper evaluates the moment equation in the 2000 Canadian highway bridge design code (CHBDC) for soil–metal arch structures. This equation is adopted from Duncan's moment equation (1978), which is based on his finding from finite element analyses that the maximum moment occurs at the quarter point of soil-metal structures. However, finite element analyses carried out for this study demonstrate that the maximum moment in soil–metal arch structures with spans greater than approximately 11 m occurs at the crown point. In this study, the location and magnitude of the maximum moment was examined for soil–metal arch structures having spans of 6–20 m under three construction stages; backfill up to the crown, backfill up to the cover depth, and live loading. Based on the location of the maximum moment, two sets of moment equations dependant on span length were found necessary. Moment coefficients and moment reduction factors in moment equations are proposed from the results of numerous finite element analyses for semi-circular arch and part-arch types of soil–metal structures considering the various design variables, such as span length, structural shapes, section properties, and backfill conditions. The validity of the coefficients and reduction factors in the moment equation of the 2000 CHBDC is investigated by comparison with those proposed in this study. The comparison demonstrates that the moment equation of the 2000 CHBDC is still valid and a little conservative. The effects of design variables on the variations of moments of soil–metal arch structures during construction stages are also examined.Key words: soil–metal arch structures, moment equations, CHBDC, soil-structure interaction.


1980 ◽  
Vol 24 (3) ◽  
pp. 489-501 ◽  
Author(s):  
Goodarz Ahmadi ◽  
Akira Hirose

The theory of electrostatic plasma turbulence is considered. The basic equations for the dynamics of the hierarchy of the moment equations are derived and the difficulty of the closure problem for strong plasma turbulence is discussed. The characteristic functional in phase space is introduced and its relations to the correlation functions are described. The Hopf functional equation for dynamics of the characteristic functional is derived, and its equivalence to the hierarchy of the moment equations is established. Similar formulations were carried out in velocity-wave vector space. characteristic functional are considered and their relationships are studied. An approximate solution for Hopf's equation for the nearly normal turbulence is obtained which is shown to predict diffusion of the mean distribution function in velocity space.


1967 ◽  
Vol 63 (4) ◽  
pp. 1369-1378 ◽  
Author(s):  
F. P. Sayer ◽  
C. C. Calder

Tiffen and Lowe in two recent papers (4,5) have developed exact theories for the bending and stretching of generally loaded elastic plates using the moments of the fundamental equations of infinitesimal elasticity. The two theories depend on the choice of independent variables so that a pair of functions, denoted by and are independent. The choice is correct in (4) but not in (5). This paper pro-poses a modification to the forms of the functions and in (5) and then shows that the modified forms are independent. The subsequent alteration to (5), as will be seen, involves only the biharmonic function χ Apart from a minor algebraic adjustment the rest of the theory, containing the real and complex eigenfunctions and particular integral, is preserved. It should be noted that the modified theory like the original is obtained entirely from the moment equations.


2020 ◽  
pp. 91-95
Author(s):  
G. Suleimenov

In this article, the set of boundary conditions is defined for first and boundary value problems for the second approximation of Boltzmann’s system of one-dimensional nonlinear moment equations and their logic. For the second approximation of Boltzmann’s one-dimensional non-stationary nonlinear moment equations, which satisfies the Maxwell-Auzhan boundary condition, the theorem for the first boundary problem is considered and by proving this theorem, it is proved that there are only solutions to the given problems. It is known that in many problems of gas dynamics there is no need to describe the complete state of the gas by the function of microscopic distribution of molecules. Therefore, it is better to look for an easier way to describe the gas using macroscopic gas – dynamic variables (density, hydrodynamic average velocity, temperature) are determined in this rotations by the moments of the microscopic distribution function of the molecules, the author faced with the problem of analyzing the different moments of the Boltzmann equation. By studying the moment equations, the author obtained some information about the function of the microscopic distribution of molecules and the convergence of the moment method.


2017 ◽  
Author(s):  
Oleksii M Matsiaka ◽  
Catherine J Penington ◽  
Ruth E Baker ◽  
Matthew J Simpson

AbstractCell migration within tissues involves the interaction of many cells from distinct subpopulations. In this work, we present a discrete model of collective cell migration where the motion of individual cells is driven by random forces, short range repulsion forces to mimic crowding, and longer range attraction forces to mimic adhesion. This discrete model can be used to simulate a population of cells that is composed of K ≥ 1 distinct subpopulations. To analyse the discrete model we formulate a hierarchy of moment equations that describe the spatial evolution of the density of agents, pairs of agents, triplets of agents, and so forth. To solve the hierarchy of moment equations we introduce two forms of closure: (i) the mean field approximation, which effectively assumes that the distributions of individual agents are independent; and (ii) a moment dynamics description that is based on the Kirkwood superposition approximation. The moment dynamics description provides an approximate way of incorporating spatial patterns, such as agent clustering, into the continuum description. Comparing the performance of the two continuum descriptions confirms that both perform well when adhesive forces are sufficiently weak. In contrast, the moment dynamics description outperforms the mean field model when adhesive forces are sufficiently large. This is a first attempt to provide an accurate continuum description of a lattice-free, multi-species model of collective cell migration.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1338 ◽  
Author(s):  
Josef Diblík ◽  
Irada Dzhalladova ◽  
Miroslava Růžičková

In many cases, it is difficult to find a solution to a system of difference equations with random structure in a closed form. Thus, a random process, which is the solution to such a system, can be described in another way, for example, by its moments. In this paper, we consider systems of linear difference equations whose coefficients depend on a random Markov or semi-Markov chain with jumps. The moment equations are derived for such a system when the random structure is determined by a Markov chain with jumps. As an example, three processes: Threats to security in cyberspace, radiocarbon dating, and stability of the foreign currency exchange market are modelled by systems of difference equations with random parameters that depend on a semi-Markov or Markov process. The moment equations are used to obtain the conditions under which the processes are stable.


Sign in / Sign up

Export Citation Format

Share Document