A unified model for exponential band tails, optoelectronic properties and metastability in A-Si: H based on charged dangling bonds

1989 ◽  
Vol 114 ◽  
pp. 244-246 ◽  
Author(s):  
M. Silver ◽  
G. Winborne ◽  
H. Branz ◽  
L. Pautmeier ◽  
H. Bassler
2017 ◽  
Vol 31 (12) ◽  
pp. 1750084 ◽  
Author(s):  
Yu Diao ◽  
Lei Liu ◽  
Sihao Xia ◽  
Yike Kong

To investigate the influences of dangling bonds on GaN nanowires surface, the differences in optoelectronic properties between H-saturated and unsaturated GaN nanowires are researched through first-principles study. The GaN nanowires along the [0001] growth direction with diameters of 3.7, 7.5 and 9.5 Å are considered. According to the results, H-saturated GaN nanowires are more stable than the unsaturated ones. With increasing nanowire diameter, unsaturated GaN nanowires become more stable, while the stability of H-saturated GaN nanowires has little change. After geometry optimization, the atomic displacements of unsaturated and H-saturated models are almost reversed. In (0001) crystal plane, Ga atoms tend to move inwards and N atoms tend to move outwards slightly for the unsaturated nanowires, while Ga atoms tend to move outwards and N atoms tend to move inwards slightly for the H-saturated nanowires. Besides, with increasing nanowire diameter, the conduction band minimum of H-saturated nanowire moves to the lower energy side, while that of the unsaturated nanowire changes slightly. The bandgaps of H-saturated nanowires are approaching to bulk GaN as the diameter increases. Absorption curves and reflectivity curves of the unsaturated and H-saturated nanowires exhibit the same trend with the change of energy except the H-saturated models which show larger variations. Through all the calculated results above, we can better understand the effects of dangling bonds on the optoelectronic properties of GaN nanowires and select more proper calculation models and methods for other calculations.


1987 ◽  
Vol 97-98 ◽  
pp. 775-778 ◽  
Author(s):  
Z.E. Smith ◽  
S. Aljishi ◽  
S. Wagner
Keyword(s):  

1996 ◽  
Vol 444 ◽  
Author(s):  
H. Okumoto ◽  
M. Shimomura ◽  
N. Minami ◽  
Y. Tanabe

AbstractSilicon-based polymers with σconjugated electrons have specific properties; photoreactivity for microlithography and photoconductivity for hole transport materials. To explore the possibility of combining these two properties to develop photoresists with electronic transport capability, photoconductivity of polysilanes is investigated in connection with their photoinduced chemical modification. Increase in photocurrent is observed accompanying photoreaction of poly(dimethylsilane) vacuum deposited films. This increase is found to be greatly enhanced in oxygen atmosphere. Such changes of photocurrent can be explained by charge transfer to electron acceptors from Si dangling bonds postulated to be formed during photoreaction.


2003 ◽  
Vol 762 ◽  
Author(s):  
J. David Cohen

AbstractThis paper first briefly reviews a few of the early studies that established some of the salient features of light-induced degradation in a-Si,Ge:H. In particular, I discuss the fact that both Si and Ge metastable dangling bonds are involved. I then review some of the recent studies carried out by members of my laboratory concerning the details of degradation in the low Ge fraction alloys utilizing the modulated photocurrent method to monitor the individual changes in the Si and Ge deep defects. By relating the metastable creation and annealing behavior of these two types of defects, new insights into the fundamental properties of metastable defects have been obtained for amorphous silicon materials in general. I will conclude with a brief discussion of the microscopic mechanisms that may be responsible.


Sign in / Sign up

Export Citation Format

Share Document