Prostaglandin E2-and interleukin-1-producing activity of plastic dish-adhering cells from cancer patients as a result of modification by BRM therapy

1987 ◽  
Vol 28 ◽  
pp. 121
Author(s):  
Ito Keiichi ◽  
Ohashi Yasuhiko ◽  
Asai Rhuji ◽  
Nakao Isao ◽  
Kanko Takao ◽  
...  
2017 ◽  
Vol 23 (32) ◽  
pp. 4893-4905 ◽  
Author(s):  
Elena Voronov ◽  
Ron N. Apte

The importance of anti-tumor immunity in the outcome of cancer is now unequivocally established and recent achivements in the field have stimulated the development of new immunotherapeutical approaches. In invasive tumors, widespread inflammation promotes invasiveness and concomitantly also inhibits anti-tumor immune responses. We suggest that efficient tumor treatment should target both the malignant cells and the tumor microenvironment. Interleukin-1 (IL-1) is a pro-inflammatory as well as an immunostimulatory cytokine that is abundant in the tumor microenvironment. Manipulation of IL-1 can thus serve as an immunotherapeutical approach to reduce inflammation/immunosuppression and thus enhance anti-tumor immunity. The two major IL-1 agonistic molecules are IL-1α and IL-1β, which bind to the same IL-1 signaling receptor and induce the same array of biological activities. The IL-1 receptor antagonist (IL-Ra) is a physiological inhibitor of IL-1 that binds to its receptor without transmition of activation signals and thus serves as a decoy target. We have demonstrated that IL-1α and IL-1β are different in terms of the producing cells and their compartmentalization and the amount. IL-1α is mainly expressed intracellularly, in the cytosol, in the nucleus or exposed on the cell membrane, however, it is rarely secreted. IL-1β is active only as a secreted molecule that is mainly produced by activated myeloid cells. We have shown different functions of IL-1α and IL-1β in the malignant process. Thus, in its membrane- associated form, IL-1α is mainly immunostimulatory, while IL-1β that is secreted into the tumor microenvironment is mainly pro-inflammatory and promotes tumorigenesis, tumor invasiveness and immunosuppression. These distinct functions of the IL-1 agonistic molecules are mainly manifested in early stages of tumor development and the patterns of their expression dictate the direction of the malignant process. Here, we suggest that IL-1 modulation can serve as an effective mean to tilt the balance between inflammation and immunity in tumor sites, towards the latter. Different agents that neutralize IL-1, mainly the IL-Ra and specific antibodies, exist. They are safe and FDA-approved. The IL-1Ra has been widely and successfully used in patients with Rheumatoid arthritis, autoinflammatory diseases and various other diseases that have an inflammatory component. Here, we provide the rationale and experimental evidence for the use of anti-IL-1 agents in cancer patients, following first line therapy to debulk the major tumor's mass. The considerations and constraints of using anti-IL-1 treatments in cancer are also discussed. We hope that this review will stimulate studies that will fasten the application of IL-1 neutralization at the bedside of cancer patients.


1992 ◽  
Vol 14 (4) ◽  
pp. 655-659 ◽  
Author(s):  
Franca Campanile ◽  
Anna Bartocci ◽  
Lucia Binaglia ◽  
Maria C. Fioretti ◽  
E. Richard Stanley ◽  
...  

1995 ◽  
Vol 484 (3) ◽  
pp. 767-775 ◽  
Author(s):  
T Watanabe ◽  
T Makisumi ◽  
M Macari ◽  
N Tan ◽  
T Nakamori ◽  
...  

1994 ◽  
Vol 86 (5) ◽  
pp. 619-626 ◽  
Author(s):  
T. D. Wardle ◽  
L. A. Turnberg

1. Biopsies of colonic mucosa from patients with ulcerative colitis liberated more interleukin-1β, prostaglandin E2, leukotriene C4 and platelet-activating factor into the medium in which they were cultured than biopsies from patients with irritable bowel syndrome and histologically normal mucosa. 2. Addition of interleukin-1 stimulated release of greater quantities of all these inflammatory mediators, including interleukin-1 itself, from inflamed and normal mucosa. 3. Blockade of cyclo-oxygenase with indomethacin or of lipoxygenase with ICI 207968 or of phospholipase A2 with mepacrine inhibited release of prostaglandin E2 or leukotriene C4 or both of these plus platelet-activating factor, respectively. 4. Interleukin-1 stimulated the short-circuit current across isolated rat colonic mucosa mounted in flux chambers in a dose-dependent manner (Km 2 × 10−11 mol/l). This stimulation was markedly inhibited by the removal of chloride from the bathing media. 5. Indomethacin or ICI 207968 inhibited the short-circuit current response to interleukin-1 and a combination of these antagonists produced a greater inhibition. Mepacrine caused an even greater inhibition whereas tetrodotoxin plus mepacrine inhibited the current completely. 6. These data indicate that interleukin-1, released in excess from inflamed colonic mucosa, stimulates the release of a range of inflammatory mediators as well as of more interleukin-1. It probably acts by stimulating phospholipase A2 in inflammatory cells, probably lymphocytes, and can do so in normal and inflamed mucosa. Since, in rat colonic mucosa it stimulated an electrical response in very low concentrations, it is feasible that it is involved in the chloride secretion, and hence the diarrhoea, which may occur in inflammatory reactions. Hence treatment with mepacrine seems a prospect worth pursuing.


Sign in / Sign up

Export Citation Format

Share Document