Obtaining strength profiles with depth for marine soil deposits

1973 ◽  
Vol 10 (4) ◽  
pp. 62
Keyword(s):  
Author(s):  
Richard D. Weir ◽  
Trevor A. Kinley ◽  
Richard W. Klafki ◽  
Clayton D. Apps

This chapter is based on ecological information on 82 radio-tagged badgers (39 F, 43 M) among three study populations in British Columbia, Canada between 1996 and 2010, data that were collected to learn more about the ecology of badgers and consider how variation in their ecology might inform regional conservation strategies. The widely spaced, lower density prey and distribution of soil deposits suitable for digging in British Columbia likely required badgers to use substantially larger areas, relative to the core range, in which to acquire sufficient energy to survive and reproduce. Strikes from automobiles were the primary cause of death among all radio-tagged badgers and this source of mortality is pervasive throughout the limited distribution of badgers in British Columbia. Despite their potential for high fecundity, populations of badgers in British Columbia likely remain at considerable risk compared to those in the core of the species’ range.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1131
Author(s):  
Soonkie Nam ◽  
Marte Gutierrez ◽  
Panayiotis Diplas ◽  
John Petrie

This paper critically compares the use of laboratory tests against in situ tests combined with numerical seepage modeling to determine the hydraulic conductivity of natural soil deposits. Laboratory determination of hydraulic conductivity used the constant head permeability and oedometer tests on undisturbed Shelby tube and block soil samples. The auger hole method and Guelph permeameter tests were performed in the field. Groundwater table elevations in natural soil deposits with different hydraulic conductivity values were predicted using finite element seepage modeling and compared with field measurements to assess the various test results. Hydraulic conductivity values obtained by the auger hole method provide predictions that best match the groundwater table’s observed location at the field site. This observation indicates that hydraulic conductivity determined by the in situ test represents the actual conditions in the field better than that determined in a laboratory setting. The differences between the laboratory and in situ hydraulic conductivity values can be attributed to factors such as sample disturbance, soil anisotropy, fissures and cracks, and soil structure in addition to the conceptual and procedural differences in testing methods and effects of sample size.


2017 ◽  
Vol 44 (12) ◽  
pp. 6134-6144 ◽  
Author(s):  
Eitan Shelef ◽  
Joel C. Rowland ◽  
Cathy J. Wilson ◽  
G. E. Hilley ◽  
Umakant Mishra ◽  
...  

2005 ◽  
Vol 42 (2) ◽  
pp. 491-498
Author(s):  
Dae-Sang Kim ◽  
Kazuo Konagai

Earthquake observations at different sites within alluvial soil deposits have demonstrated that the motion of buried underground structures closely follows that of the surrounding soil. Therefore, it is usual in a seismic design process to apply free-field ground displacements through Winkler-type soil springs to an underground structure to evaluate stress patterns induced within its structural members. Using a simplified approach, this paper provides a clear understanding of resonant horizontal ground displacement of and strain in a surface soil deposit with a radical change of depth and of where they occur.Key words: simple approach, seismic design, earthquake, resonance, underground structures.


Author(s):  
Xiaodong Zhao ◽  
Guoqing Zhou ◽  
Bo Wang ◽  
Wei Jiao ◽  
Jing Yu

Artificial frozen soils (AFS) have been used widely as temporary retaining walls in strata with soft and water-saturated soil deposits. After excavations, frozen soils thaw, and the lateral earth pressure penetrates through the soils subjected to freeze–thaw, and acts on man-made facilities. Therefore, it is important to investigate the lateral pressure (coefficient) responses of soils subjected to freeze–thaw to perform structure calculations and stability assessments of man-made facilities. A cubical testing apparatus was developed, and tests were performed on susceptible soils under conditions of freezing to a stable thermal gradient and then thawing with a uniform temperature (Fnonuni–Tuni). The experimental results indicated a lack of notable anisotropy for the maximum lateral preconsolidated pressures induced by the specimen’s compaction and freeze–thaw. However, the freeze–thaw led to a decrement of lateral earth pressure coefficient  K0, and  K0 decrement under the horizontal Fnonuni–Tuni was greater than that under the vertical Fnonuni–Tuni. The measured  K0 for normally consolidated and over-consolidated soil specimens exhibited anisotropic characteristics under the vertical Fnonuni–Tuni and horizontal Fnonuni–Tuni treatments. The anisotropies of  K0 under the horizontal Fnonuni–Tuni were greater than that under the vertical Fnonuni–Tuni, and the anisotropies were more noticeable in the unloading path than that in the loading path. These observations have potential significances to the economical and practical design of permanent retaining walls in soft and water-saturated soil deposits.


2004 ◽  
Vol 203 (3-4) ◽  
pp. 341-354 ◽  
Author(s):  
G Biscontin ◽  
J.M Pestana ◽  
F Nadim

Sign in / Sign up

Export Citation Format

Share Document