A study of the impact of environmental stochasticity on extinction probabilities by Monte Carlo integration

1987 ◽  
Vol 83 (1) ◽  
pp. 105-125 ◽  
Author(s):  
Charles J. Mode ◽  
Marc E. Jacobson
2018 ◽  
Vol 175 ◽  
pp. 01003 ◽  
Author(s):  
Leonardo Giusti ◽  
Marco Cè ◽  
Stefan Schaefer

The numerical computations of many quantities of theoretical and phenomenological interest are plagued by statistical errors which increase exponentially with the distance of the sources in the relevant correlators. Notable examples are baryon masses and matrix elements, the hadronic vacuum polarization and the light-by-light scattering contributions to the muon g – 2, and the form factors of semileptonic B decays. Reliable and precise determinations of these quantities are very difficult if not impractical with state-of-the-art standard Monte Carlo integration schemes. I will review a recent proposal for factorizing the fermion determinant in lattice QCD that leads to a local action in the gauge field and in the auxiliary boson fields. Once combined with the corresponding factorization of the quark propagator, it paves the way for multi-level Monte Carlo integration in the presence of fermions opening new perspectives in lattice QCD. Exploratory results on the impact on the above mentioned observables will be presented.


2017 ◽  
Author(s):  
Kolja Müller ◽  
Po Wen Cheng

Abstract. Fatigue load assessment of floating offshore wind turbines poses new challenges on the feasibility of numerical procedures. Due to the increased sensitivity of the considered system with respect to the environmental conditions from wind and ocean, the application of common procedures used for fixed-bottom structures results in either inaccurate simulation results or hard-to-quantify conservatism in the system design. Monte Carlo based sampling procedures provide a more realistic approach to deal with the large variation of the environmental conditions, although basic randomization has shown slow convergence. Specialized sampling methods allow efficient coverage of the complete design space, resulting in faster convergence and hence a reduced number of required simulations. In this study, a quasi-random sampling approach based on Sobol’ sequences is applied to select representative events for the determination of the lifetime damage. This is calculated applying Monte-Carlo integration, using subsets of a resulting total of 16 200 coupled time-domain simulations performed with the simulation code FAST. The considered system is the DTU 10 MW reference turbine installed on the LIFES50+ OO-Star Wind Floater Semi 10 MW floating platform. Statistical properties of the considered environmental parameters (i.e. wind speed, wave height and wave period) are determined based on the measurement data from Gulf of Maine, USA. Convergence analyses show that it is sufficient to perform around 200 simulations in order to reach less than 10 % uncertainty of lifetime fatigue damage equivalent loading. Complementary in-depth investigation is performed focusing on the load sensitivity and the impact of outliers. Recommendations for the implementation of the proposed methodology in the design process are also provided.


2018 ◽  
Vol 3 (1) ◽  
pp. 149-162 ◽  
Author(s):  
Kolja Müller ◽  
Po Wen Cheng

Abstract. Fatigue load assessment of floating offshore wind turbines poses new challenges on the feasibility of numerical procedures. Due to the increased sensitivity of the considered system with respect to the environmental conditions from wind and ocean, the application of common procedures used for fixed-bottom structures results in either inaccurate simulation results or hard-to-quantify conservatism in the system design. Monte Carlo-based sampling procedures provide a more realistic approach to deal with the large variation in the environmental conditions, although basic randomization has shown slow convergence. Specialized sampling methods allow efficient coverage of the complete design space, resulting in faster convergence and hence a reduced number of required simulations. In this study, a quasi-random sampling approach based on Sobol sequences is applied to select representative events for the determination of the lifetime damage. This is calculated applying Monte Carlo integration, using subsets of a resulting total of 16 200 coupled time–domain simulations performed with the simulation code FAST. The considered system is the Danmarks Tekniske Universitet (DTU) 10 MW reference turbine installed on the LIFES50+ OO-Star Wind Floater Semi 10 MW floating platform. Statistical properties of the considered environmental parameters (i.e., wind speed, wave height and wave period) are determined based on the measurement data from the Gulf of Maine, USA. Convergence analyses show that it is sufficient to perform around 200 simulations in order to reach less than 10 % uncertainty of lifetime fatigue damage-equivalent loading. Complementary in-depth investigation is performed, focusing on the load sensitivity and the impact of outliers (i.e., values far away from the mean). Recommendations for the implementation of the proposed methodology in the design process are also provided.


Author(s):  
Sebastian Eisele ◽  
Fabian M. Draber ◽  
Steffen Grieshammer

First principles calculations and Monte Carlo simulations reveal the impact of defect interactions on the hydration of barium-zirconate.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1889
Author(s):  
Arthur Bongrand ◽  
Charbel Koumeir ◽  
Daphnée Villoing ◽  
Arnaud Guertin ◽  
Ferid Haddad ◽  
...  

Proton therapy (PRT) is an irradiation technique that aims at limiting normal tissue damage while maintaining the tumor response. To study its specificities, the ARRONAX cyclotron is currently developing a preclinical structure compatible with biological experiments. A prerequisite is to identify and control uncertainties on the ARRONAX beamline, which can lead to significant biases in the observed biological results and dose–response relationships, as for any facility. This paper summarizes and quantifies the impact of uncertainty on proton range, absorbed dose, and dose homogeneity in a preclinical context of cell or small animal irradiation on the Bragg curve, using Monte Carlo simulations. All possible sources of uncertainty were investigated and discussed independently. Those with a significant impact were identified, and protocols were established to reduce their consequences. Overall, the uncertainties evaluated were similar to those from clinical practice and are considered compatible with the performance of radiobiological experiments, as well as the study of dose–response relationships on this proton beam. Another conclusion of this study is that Monte Carlo simulations can be used to help build preclinical lines in other setups.


2021 ◽  
Vol 31 (4) ◽  
Author(s):  
Rémi Leluc ◽  
François Portier ◽  
Johan Segers

Sign in / Sign up

Export Citation Format

Share Document