Microstructures and mechanical properties of extruded bars made from rapidly solidified steel powder (RSP)

1991 ◽  
Vol 46 (7-8) ◽  
pp. 55-56
2009 ◽  
Vol 24 (10) ◽  
pp. 3108-3115 ◽  
Author(s):  
Zhengwang Zhu ◽  
Haifeng Zhang ◽  
Hao Wang ◽  
Bingzhe Ding ◽  
Zhuang-Qi Hu ◽  
...  

The influence of casting temperatures on microstructures and mechanical properties of rapidly solidified Cu50Zr45.5Ti2.5Y2 alloy was investigated. With increasing casting temperatures, the amount of the crystalline phase decreases. At a high casting temperature, i.e., 1723 K, glass-forming ability (GFA) of the present alloy is enhanced. The results imply that adjusting the casting temperature could be used for designing the microstructures of bulk metallic glass matrix composite. Nanoindentation tests indicated that CuZr phases are slightly softer and can accommodate more plastic deformation than the amorphous matrix. Compression tests confirmed that this kind of second phase (CuZr) precipitated under lower casting temperatures helps to initiate multiple shear bands, resulting in a great improvement in mechanical properties of the samples. Our work indicates that casting temperatures have a great influence on GFA, microstructures, and mechanical properties of the rapidly solidified alloy, therefore controlling the casting temperature is crucial to the production of BMGs.


Author(s):  
Michael M. Kersker ◽  
E. A. Aigeltinger ◽  
J. J. IIren

Ni-rich alloys based on approximate ternary composition Ni-8Mo-15A1 (at%) are presently under investigation in an attempt to study the contribution, if any, of the profusion of Mo-rich NixMo metastable compounds that these alloys contain to their excellent mechanical properties. One of the alloys containing metastable NixMo precipitates is RSR 197 of composition Ni-8.96Mo-15.06A1-1.98Ta-.015Yt. The alloy was prepared at Pratt and Whitney Government Products Division, West Palm Beach, Florida, from rapidly solidified powder. The powder was canned under inert conditions and extruded as rod at 1315°C. The as-extruded rod, after air cooling, was solution treated at 1315°C for two hours, air cooled, and heat treated for one hour at 815°C, followed again by air cooling.


Sign in / Sign up

Export Citation Format

Share Document