Mode of stress release within a subducting slab of lithosphere: implication of source mechanism of deep and intermediate-depth earthquakes

1989 ◽  
Vol 55 (1-2) ◽  
pp. 106-125 ◽  
Author(s):  
Noriko Sugi ◽  
Masayuki Kikuchi ◽  
Yoshio Fukao
2017 ◽  
Vol 10 (12) ◽  
pp. 960-966 ◽  
Author(s):  
Marco Scambelluri ◽  
Giorgio Pennacchioni ◽  
Mattia Gilio ◽  
Michel Bestmann ◽  
Oliver Plümper ◽  
...  

Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 355-364 ◽  
Author(s):  
P. E. van Keken ◽  
S. Kita ◽  
J. Nakajima

Abstract. The cause of intermediate-depth (>40 km) seismicity in subduction zones is not well understood. The viability of proposed mechanisms, which include dehydration embrittlement, shear instabilities and the presence of fluids in general, depends significantly on local conditions, including pressure, temperature and composition. The well-instrumented and well-studied subduction zone below Northern Japan (Tohoku and Hokkaido) provides an excellent testing ground to study the conditions under which intermediate-depth seismicity occurs. This study combines new finite element models that predict the dynamics and thermal structure of the Japan subduction system with a high-precision hypocenter data base. The upper plane of seismicity is principally contained in the crustal portion of the subducting slab and appears to thin and deepen within the crust at depths >80 km. The disappearance of seismicity overlaps in most of the region with the predicted phase change of blueschist to hydrous eclogite, which forms a major dehydration front in the crust. The correlation between the thermally predicted blueschist-out boundary and the disappearance of seismicity breaks down in the transition from the northern Japan to Kurile arc below western Hokkaido. Adjusted models that take into account the seismically imaged modified upper mantle structure in this region fail to adequately recover the correlation that is seen below Tohoku and eastern Hokkaido. We conclude that the thermal structure below Western Hokkaido is significantly affected by time-dependent, 3-D dynamics of the slab. This study generally supports the role of fluids in the generation of intermediate-depth seismicity.


2012 ◽  
Vol 4 (2) ◽  
pp. 1069-1093 ◽  
Author(s):  
P. E. van Keken ◽  
S. Kita ◽  
J. Nakajima

Abstract. The cause of intermediate-depth (> 40 km) seismicity in subduction zones is not well understood. The viability of proposed mechanisms, that include dehydration embrittlement, shear instabilities, and the presence of fluids in general, depends significantly on local conditions, including pressure, temperature and composition. The well-instrumented and well-studied subduction zone below Northern Japan (Tohoku and Hokkaido) provides an excellent testing ground to study the conditions under which intermediate-depth seismicity occurs. This study combines new high resolution finite elements models that predict the dynamics and thermal structure of the Japan subduction system with a high precision hypocenter data base. The upper plane of seismicity is principally contained in the crustal portion of the subducting slab and appears to thin and deepen within the crust at depths > 80 km. The disappearance of seismicity overlaps in most of the region with the predicted phase change of blueschist to hydrous eclogite, which forms a major dehydration front in the crust. The correlation between thermally predicted blueschist-out boundary and the disappearance of seismicity breaks down in the transition from the northern Japan to Kurile arc below western Hokkaido. Adjusted models, that take into account the seismically imaged modified upper mantle structure in this region, fail to adequately recover the correlation that is seen below Tohoku and eastern Hokkaido. We conclude that the thermal structure below Western Hokkaido is significantly affected by time-dependent, 3-D dynamics of the slab. This study generally supports the role of fluids in the generation of intermediate-depth seismicity.


2020 ◽  
Author(s):  
Sean Gallen ◽  
◽  
Richard Ott ◽  
Karl W. Wegmann ◽  
Frank J. Pazzaglia ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Sharadha Sathiakumar ◽  
Sylvain Barbot

AbstractThe Himalayan megathrust accommodates most of the relative convergence between the Indian and Eurasian plates, producing cycles of blind and surface-breaking ruptures. Elucidating the mechanics of down-dip segmentation of the seismogenic zone is key to better determine seismic hazards in the region. However, the geometry of the Himalayan megathrust and its impact on seismicity remains controversial. Here, we develop seismic cycle simulations tuned to the seismo-geodetic data of the 2015 Mw 7.8 Gorkha, Nepal earthquake to better constrain the megathrust geometry and its role on the demarcation of partial ruptures. We show that a ramp in the middle of the seismogenic zone is required to explain the termination of the coseismic rupture and the source mechanism of up-dip aftershocks consistently. Alternative models with a wide décollement can only explain the mainshock. Fault structural complexities likely play an important role in modulating the seismic cycle, in particular, the distribution of rupture sizes. Fault bends are capable of both obstructing rupture propagation as well as behave as a source of seismicity and rupture initiation.


2020 ◽  
Vol 108 (11) ◽  
pp. 873-877
Author(s):  
Tetsuji Yamaguchi ◽  
Saki Ohira ◽  
Ko Hemmi ◽  
Logan Barr ◽  
Asako Shimada ◽  
...  

AbstractSorption distribution coefficient (Kd) of niobium-94 on minerals are an important parameter in safety assessment of intermediate-depth disposal of waste from core internals etc. The Kd of Nb on clay minerals in Ca(ClO4)2 solutions were, however, not successfully modeled in a previous study. The high distribution coefficients of Nb on illite in Ca(ClO4)2 solutions were successfully reproduced by taking Ca–Nb–OH surface species into account. Solubility of Nb was studied in Ca(ClO4)2 solutions and the results were reproduced by taking an aqueous Ca–Nb–OH complex species, CaNb(OH)6+, into account in addition to previously reported Nb(OH)6− and Nb(OH)72−. Based on this aqueous speciation model, the Ca–Nb–OH surface species responsible for the sorption of Nb on illite in Ca(ClO4)2 solutions was presumed to be X_OCaNb(OH)6. Although uncertainties exist in the speciation of aqueous Ca–Nb–OH species, the result of this study proposed a possible mechanism for high distribution coefficient of Nb on illite in Ca(ClO4)2 solutions. The mechanism includes Ca–Nb–OH complex formation in aqueous, solid and surface phases.


Sign in / Sign up

Export Citation Format

Share Document