Copper-containing nanocomposites on the basis of isotactic polypropylene and butadiene-nitrile rubber

2021 ◽  
Vol 5 ◽  
pp. 76-81
Author(s):  
N.I. Kurbanova ◽  
◽  
S. K. Ragimova ◽  
N. A. Alimirzoeva ◽  
N. Ya. Ishenko ◽  
...  

The influence of additives of nanofillers (NF) containing nanoparticles of copper oxides stabilized by a polymer matrix of high-pressure polyethylene (PE) obtained by the mechanochemical method on the structure and properties features of metal-containing nanocomposites based on isotactic polypropylene (PP) and butadiene-nitrile rubber (BNK) is studied by X-ray phase (XRD) and differential thermal analyses(DTA). The improvement of strength, deformation and rheological parameters, as well as thermal-oxidative stability of the obtained nanocomposites was revealed, which, apparently, is associated with the synergistic effect of interfacial interaction of copper-containing nanoparticles in the PE matrix with the components of the PP/BNK polymer composition. It is shown that nanocomposites based on PP/BNK/NF can be processed both by pressing method and by injection molding and extrusion methods, which expands the scope of its application.

2021 ◽  
pp. 38-43
Author(s):  
T.M. Gulieva ◽  

The influence of additives of nanofillers containing nanoparticles of copper oxides stabilized by a polymer matrix of maleinized high-pressure polyethylene obtained by the mechano-chemical method on the structure and properties features of metal-containing nanocomposites based on isotactic polypropylene and butadiene-nitrile rubber by x-ray phase and differential thermal analyses is studied. The improvement of strength, deformation and rheological parameters, as well as thermal-oxidative stability of the obtained nanocomposites was revealed, that is probably due to the synergistic effect of interaction of copper-containing nanoparticles with maleic groups of maleinated high-pressure polyethylene. It is shown that nanocomposites based on isotactic polypropylene and butadiene-nitrile rubber can be processed both by pressing method and by injection molding and extrusion methods that expands the scope of its application


2021 ◽  
Vol 11 ◽  
pp. 47-53
Author(s):  
N. I. Kurbanova ◽  
◽  
S. K. Ragimova ◽  
N. A. Alimirzoeva ◽  
N. Ya. Ishenko ◽  
...  

The effect of nanofiller (NF) additives containing zink oxide nanoparticles stabilized by a polymer matrix of high pressure polyethylene obtained by the mechanochemical method on the structure and properties of metal-containing nanocomposites based on isotactic polypropylene (PP) and high pressure polyethylene (PE) using differential thermal (DTA) and X-ray phase (XRF) analyzes. The improvement of strength, deformation and rheological parameters, as well as thermal-oxidative stability of the obtained nanocomposites was revealed, which, apparently, is associated with the synergistic effect of interfacial interaction of zink — containing nanoparticles in the PE matrix with the components of the PP/PE polymer composition. It is shown that nanocomposites based on PP/PE/NF can be processed both by pressing method and by injection molding and extrusion methods, which expands the scope of its application.


2021 ◽  
pp. 49-53
Author(s):  
S.K. Ragimova ◽  

The effect of nanofilles additives containing copper oxide nanoparticles stabilized by a polymer matrix of high-pressure polyethylene obtained by the mechanochemical method on features of the structure and properties of metal-containing nanocomposites based on isotactic polypropylene and high-pressure polyethylene was studied using differential thermal (DTA) and X-ray phase (XRD) analyzes. The improvement of strength, deformation and rheological parameters, as well as thermal-oxidative stability of the obtained nanocomposites was revealed, that apparently, is associated with the synergistic effect of interfacial interaction of copper-containing nanoparticles in the PE matrix with the components of the PP/PE polymer composition


2020 ◽  
pp. 59-64
Author(s):  
N. I. Kurbanova ◽  
◽  
T. M. Gulieva ◽  
N. Ya. Ischenko ◽  
◽  
...  

The effect of additives of nanofillers (NF) containing nanoparticles (NP) of copper oxide, stabilized by a polymer matrix of maleized polyethylene (MPE), obtained by the mechanochemical method, on the properties of composites based on isotactic polypropylene (PP) and high-pressure polyethylene (PE) was studied by X-ray phase (XRD) and thermogravimetric (TGA) analyzes. The enhancement of strength, deformation, and rheological parameters, as well as the thermo-oxidative stability of the obtained nanocomposites was revealed, which, apparently, is due to the synergistic effect of the interaction of copper-containing nanoparticles with anhydride groups of MPE. It is shown that nanocomposites based on PP/PE/NF can be processed both by pressing and injection molding and extrusion, which expands the scope of its application.


2014 ◽  
Vol 292 (12) ◽  
pp. 3205-3221 ◽  
Author(s):  
Yingrui Shang ◽  
Jing Zhao ◽  
Jingqing Li ◽  
Zhonghua Wu ◽  
Shichun Jiang

2020 ◽  
pp. 52-58
Author(s):  
N. I. Kurbanova ◽  
◽  
S. K. Ragimova ◽  
N. Ya. Ishenko ◽  
S. F. Akhmedbekova ◽  
...  

The influence of additions of nanofillers (NF) containing nanoparticles of copper and zinc oxides, stabilized by polymer matrix of high pressure polyethylene, prepared by mechano-chemical method on peculiarities of structure and properties of the metal-containing nanocomposites on the basis of epoxy diane resin (ED-20) by the methods of differential-thermal (DTA) and IR-spectral (IRS) and X-ray diffraction (XRD) has been investigated. It has been shown that an introduction of the metal-containing NF in composition with ED-20 shifts the cold curing reaction temperature from 90 to 75 °C, and hot curing from 125 to 100 °C and favors increase of its thermal stability, which is confirmed by growth of activation energy of thermal-oxidative destruction (Eact) from 210 to 225 kJ/mol. It has been shown that the nanoparticles of copper oxide increase the thermal properties of ED-20 and are the catalysts of curing reaction as evidenced by peak height on curing curve. In this case, the nanoparticles of zinc oxide practically don’t influence on thermal properties of nanocomposites on the basis of ED-20.


Author(s):  
Najaf T. Kakhramanov ◽  
Ulviya M. Mammadli ◽  
Nushaba B. Arzumanova ◽  
Zulfira N. Huseynova ◽  
Esmira V. Dadasheva ◽  
...  

The study results of the influence of butadiene-nitrile rubber different grades concentration, cross-linking agent type and content on the physico-mechanical and thermo-deformation properties of polymer compositions based on polypropylene are presented. Mixing of the components was carried out on hot rollers in the melt mode at 170 °C. A preliminary study of rubber concentration affect on the properties of compositions based on polypropylene showed that the introduction of an elastomeric component leads to a regular decrease in the strength and elongation at break of the compositions. The results of investigation of the thermo-deformation properties of polymer compositions showed that at a rubber concentration of 30wt%, and higher on thermomechanical curves, the region of the high-elastic state characteristic of rubbers is noticeably distinguished. Taking into account that the rubber materials are obtained during the process of their vulcanization, it seemed interesting to crosslink materials with two types of vulcanizing agents – dicumyl peroxide and sulphur for obtaining comparable results. The concentration of dicumyl peroxide was varied between 0.5 - 2.0 wt%. It was found that the use of dicumyl peroxide in an amount of 1.0-2.0 wt% is accompanied by intense occurrence of crosslinking with the formation of an irreversible highly crosslinked structure in the polymer composition. Based on the evaluation of the melt flow index of the vulcanized compositions, it was found that at the concentration of dicumyl peroxide in an amount of 0.5 wt% they still retain the ability to flow. At concentrations above 0.5 wt% of dicumyl peroxide the polymer compositions completely lose the fluidity of the melt. It was found that with an increase in the sulphur concentration from 3.0 to 10 wt% the decrease in the melt flow index from 2.76 to 0.616 g/10 min is observed. It was found that the crosslinking process predominantly proceeds through double bonds of butadiene-nitrile rubber, thereby facilitating the production of dynamically vulcanized polymer materials with a unique combination of structure and properties. This was confirmed by the results of a study of the thermo-deformation characteristics of compositions, according to which a transition from the region of a high-elastic state to viscous-flow state is observed in all samples subjected to sulfur vulcanization. The results of the study make it possible to state that dynamic thermoplastic elastomers can be obtained only if the ratio of the components used in the polymer composition is correctly selected.


RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8619-8627
Author(s):  
I. E. Grey ◽  
P. Bordet ◽  
N. C. Wilson

Amorphous titania samples prepared by ammonia solution neutralization of titanyl sulphate have been characterized by chemical and thermal analyses, and with reciprocal-space and real-space fitting of wide-angle synchrotron X-ray scattering data.


Sign in / Sign up

Export Citation Format

Share Document