Acid-tolerance and symbiotic effectiveness of Rhizobium leguminosarum bv. Trifolii isolated from subterranean clover growing in permanent pastures

1995 ◽  
Vol 27 (1) ◽  
pp. 111-115 ◽  
Author(s):  
J.F. Slattery ◽  
D.R. Coventry
1997 ◽  
Vol 37 (6) ◽  
pp. 623 ◽  
Author(s):  
P. E. Quigley ◽  
P. J. Cunningham ◽  
M. Hannah ◽  
G. N. Ward ◽  
T. Morgan

Summary. The whole-soil inoculation method was used to assess the symbiotic effectiveness of rhizobia populations in soils collected from 18 randomly-selected pastures in south-western Victoria. This was part of a larger study which described the condition of pasture within this region. Based on the shoot weights of test subterranean clover plants, cv. Mount Barker, effectiveness varied from 36 to 94% depending on the site of rhizobia collection. This range was wider than that found in an earlier survey of rhizobia effectiveness conducted nearby. WU95, the commercial inoculant for subterranean clover, was significantly more effective than 9 of the rhizobia samples. Rhizobia from 2 sites were especially poor and their effectiveness (37%) was not significantly different from the nil inoculum control (28%). Symbiotic effectiveness was not related to soil pH, available sulfur, available phosphorus, total nitrogen or mean annual rainfall for each site where rhizobia were collected. After pooling data for all sites, the shoot weights were significantly related to the proportions of plants with nodules assigned high nodulation scores. In contrast, low scores, within 1 of 6 categories, did not significantly affect shoot weight. The technique of using mean nodulation score was less capable of discriminating differences in symbiotic effectiveness, compared with assessment based on test plant weight.


Soil Research ◽  
2002 ◽  
Vol 40 (8) ◽  
pp. 1319 ◽  
Author(s):  
M. T. Collins ◽  
J. E. Thies ◽  
L. K. Abbott

The abundance of the Australian inoculant strain of Rhizobium leguminosarum bv. trifolii for subterraneum clover (WU95) and the diversity of naturalised rhizobia were assessed in 3 subterranean clover pastures in the Albany region of south-western Western Australia. Most probable number, enzyme linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) techniques were used. A putative strain similar to inoculant strain WU96 was uncommon at one site (South Stirling) and not isolated at 2 other sites. Randomly amplified polymorphic DNA (RAPD) PCR fingerprinting using the RPO1 primer identified 45 different profiles amongst the 208 isolates examined. RAPD-PCR fingerprinting using the primers RPO4 and RPO5 confirmed most groupings based on RPO1 fingerprint patterns and revealed further genetic diversity within some groups. Overall, 54 putative strains were defined by RAPD-PCR fingerprint profiles across the 3 sites. Subterranean clover rhizobia at the Manypeaks and Mount Shadforth sites were dominated by isolates with 1 or 2 RPO1 RAPD profiles at 2 sampling times, while the population at South Stirling was much more diverse. The symbiotic effectiveness of 11 rhizobial isolates, representing the major RPO1 RAPD profile groups within naturalised rhizobial populations, were compared in pot culture with those of the 2 commercial inoculant strains for subterranean clover, WU95 and TA1, on 3 cultivars. Differences in effectiveness among 3 of the 11 isolates were observed in comparison to both the commercial strains and other naturalised isolates. The nitrogen fixing effectiveness of 8 isolates representing different subgroups from one RP01 group was not the same. The use of all 3 primers increased the precision in defining putative strains of Rhizobium leguminosarum bv. trifolii, and although naturalised rhizobia from these pastures are saprophytically competent, their dominance in nodules does not appear to be linked to symbiotic effectiveness.


2001 ◽  
Vol 52 (10) ◽  
pp. 963 ◽  
Author(s):  
Kellie J. Munn ◽  
Jeffrey Evans ◽  
Phillip M. Chalk

To determine the effects of urban sewage biosolids on the symbiotic effectiveness of Rhizobium leguminosarum bv. trifolii and N2 fixation, glasshouse and laboratory studies were carried out with several soils, biosolids, and biosolid application levels. Symbiotic effectiveness of R. l. trifolii was estimated as the dry weight or N content of seedlings of subterranean clover grown with only N2 fixation and seed N as the available nitrogen sources. The N fixed by legumes in unamended and biosolid-amended soils was determined using the 15N isotope dilution method. Six soils were represented in the experiments. Each of these was equilibrated over a period of 12 months with dried, finely ground biosolids (DWS) from the Malabar sewage treatment plant, at biosolids levels ranging from the equivalent of 60 to 240 t DWS/ha. One of the soils was also equilibrated with each of 4 other biosolids. The maximal concentration of heavy metals in soil amended with biosolids was 1026 mg/kg. The effect of biosolids on symbiotic effectiveness depended on the soil type and biosolid applications level. Thus, biosolids reduced the symbiotic effectiveness of R. l. trifolii in 2 of the 6 soils, although at different levels of biosolid. In most soil treatments N2 fixation was detected in subterranean clover, confirming the persistence of symbiotically effective rhizobia in most biosolids-amended soils. In addition, in strongly acidic soils plant N and N2 fixation increased significantly with biosolids addition, probably in response to higher soil pH, exchangeable Ca, and available P. In the treatments in which the symbiotic effectiveness of R. l. trifolii was reduced by biosolids, this was reflected in poor N2 fixation. However, symbiotic effectiveness did not correlate well with N2 fixation, probably because increases in soil nitrate at higher biosolids levels inhibited N2 fixation. Nevertheless, there were instances at 240 t DWS/ha where this was unlikely to explain the decrease in N2 fixation. It was concluded that adverse effects of biosolids on symbiotic effectiveness depend first on soil type, and then on biosolid type and application level; and the response in symbiotic effectiveness to adding biosolids to soil needs to be determined for each distinctively different site of biosolids reuse.


2005 ◽  
Vol 54 (2) ◽  
pp. 142-147 ◽  
Author(s):  
Fauzia Y. Hafeez ◽  
Farrukh I. Naeem ◽  
Rehan Naeem ◽  
Arsalan H. Zaidi ◽  
Kausar A. Malik

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1630
Author(s):  
Ana Paço ◽  
José Rodrigo da-Silva ◽  
Denise Pereira Torres ◽  
Bernard R. Glick ◽  
Clarisse Brígido

Manganese (Mn) toxicity is a very common soil stress around the world, which is responsible for low soil fertility. This manuscript evaluates the effect of the endophytic bacterium Pseudomonas sp. Q1 on different rhizobial-legume symbioses in the absence and presence of Mn toxicity. Three legume species, Cicer arietinum (chickpea), Trifolium subterraneum (subterranean clover), and Medicago polymorpha (burr medic) were used. To evaluate the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase produced by strain Q1 in these interactions, an ACC deaminase knockout mutant of this strain was constructed and used in those trials. The Q1 strain only promoted the symbiotic performance of Rhizobium leguminosarum bv. trifolii ATCC 14480T and Ensifer meliloti ATCC 9930T, leading to an increase of the growth of their hosts in both conditions. Notably, the acdS gene disruption of strain Q1 abolished the beneficial effect of this bacterium as well as causing this mutant strain to act deleteriously in those specific symbioses. This study suggests that the addition of non-rhizobia with functional ACC deaminase may be a strategy to improve the pasture legume–rhizobial symbioses, particularly when the use of rhizobial strains alone does not yield the expected results due to their difficulty in competing with native strains or in adapting to inhibitory soil conditions.


2002 ◽  
Vol 29 (7) ◽  
pp. 907
Author(s):  
Louise F. Roddam ◽  
Wendy R. Lewis-Henderson ◽  
Michael A. Djordjevic

The nodulation failure resulting from the interaction between Rhizobium leguminosarum biovar trifolii strain ANU794 and the Trifolium subterraneum cv. Woogenellup was examined by transposon mutagenesis to resolve whether multiple determinants were involved in cultivar-specificity. Three new transposon-induced mutants of ANU794 (W72, W78 and W710) with significantly enhanced nodulation ability on cv. Woogenellup were identified. The W72 and W78 mutations are chromosomally-located, whereas the W710 mutation isplasmid-located. The ethylene synthesis inhibitor, aminoethoxyvinylglycine, fails to enhance the nodulation ability of ANU794, ANU7943 (csn1::Tn5) and W78 on cv. Woogenellup, but enhances the nodulation ability of W72,W710 and ANU7941 (nodM::Tn5). DNA sequencing of the W78 locus reveals strong homology to an unknown Mycobacterium open reading frame, and to several bacterial non-haem chloroperoxidases. The previously identified csn1 locus showed homology to the 50S ribosomal protein, L9, with the Tn5 insertion being located in the 5′-untranslated region. The results suggest that cultivar-specificity is mediated by at least two independent mechanisms or determinants, and not by a simple gene-for-gene interaction. The role of ethylene in cultivar specificity is discussed. Cultivar-specific interactions may prove useful in identifying pathways involved in efficient nodule formation and plant-microbe interactions.


Sign in / Sign up

Export Citation Format

Share Document