An evaluation of energy transport models for silicon device simulation

1991 ◽  
Vol 34 (6) ◽  
pp. 617-628 ◽  
Author(s):  
T.J. Bordelon ◽  
X.-L. Wang ◽  
C.M. Maziar ◽  
A.F. Tasch
Author(s):  
Marianne Bessemoulin-Chatard ◽  
Claire Chainais-Hillairet ◽  
Hélène Mathis

2005 ◽  
Vol 97 (9) ◽  
pp. 093710 ◽  
Author(s):  
T. Grasser ◽  
R. Kosik ◽  
C. Jungemann ◽  
H. Kosina ◽  
S. Selberherr

2020 ◽  
Vol 86 (3) ◽  
Author(s):  
S. Toda ◽  
M. Nunami ◽  
H. Sugama

Using transport models, the impacts of trapped electrons on zonal flows and turbulence in helical field configurations are studied. The effect of the trapped electrons on the characteristic quantities of the linear response for zonal flows is investigated for two different field configurations in the Large Helical Device. The turbulent potential fluctuation, zonal flow potential fluctuation and ion energy transport are quickly predicted by the reduced models for which the linear and nonlinear simulation results are used to determine dimensionless parameters related to turbulent saturation levels and typical zonal flow wavenumbers. The effects of zonal flows on the turbulent transport for the case of the kinetic electron response are much smaller than or comparable to those in an adiabatic electron condition for the two different field configurations. It is clarified that the effect of zonal flows on the turbulent transport due to the trapped electrons changes, depending on the field configurations.


VLSI Design ◽  
1995 ◽  
Vol 3 (2) ◽  
pp. 211-224 ◽  
Author(s):  
Edwin C. Kan ◽  
Zhiping Yu ◽  
Robert W. Dutton ◽  
Datong Chen ◽  
Umberto Ravaioli

According to different assumptions in deriving carrier and energy flux equations, macroscopic semiconductor transport models from the moments of the Boltzmann transport equation (BTE) can be divided into two main categories: the hydrodynamic (HD) model which basically follows Bløtekjer's approach [1, 2], and the Energy Transport (ET) model which originates from Strattton's approximation [3, 4]. The formulation, discretization, parametrization and numerical properties of the HD and ET models are carefully examined and compared. The well-known spurious velocity spike of the HD model in simple nin structures can then be understood from its formulation and parametrization of the thermoelectric current components. Recent progress in treating negative differential resistances with the ET model and extending the model to thermoelectric simulation is summarized. Finally, we propose a new model denoted by DUET (Dual ET)which accounts for all thermoelectric effects in most modern devices and demonstrates very good numerical properties. The new advances in applicability and computational efficiency of the ET model, as well as its easy implementation by modifying the conventional drift-diffusion (DD) model, indicate its attractiveness for numerical simulation of advanced semiconductor devices


Sign in / Sign up

Export Citation Format

Share Document