Natural deformation fabrics of plagioclase: implications for slip systems and seismic anisotropy—a discussion on measuring and interpreting plagioclase preferred orientations

1989 ◽  
Vol 166 (4) ◽  
pp. 345-349 ◽  
Author(s):  
Jörn H. Kruhl
2021 ◽  
Author(s):  
Seokyoung Han ◽  
Haemyeong Jung

<p>Muscovite is a major constituent mineral in the continental crust that exhibits very strong seismic anisotropy. Muscovite alignment in rocks can significantly affect the magnitude and symmetry of seismic anisotropy. Thus, it is necessary to analyze natural mica-rich rocks to investigate the origin of seismic anisotropy observed in the crust. In this study, deformation microstructures of muscovite-quartz phyllites from the Geumseongri Formation in Gunsan, South Korea were studied using the electron backscattered diffraction technique to investigate the relationship between muscovite and chlorite fabrics in strongly deformed rocks and the seismic anisotropy observed in the continental crust. The [001] axes of muscovite and chlorite were strongly aligned subnormal to the foliation, while the [100] and [010] axes were aligned subparallel to the foliation. The distribution of quartz c-axes indicates activation of the basal<a>, rhomb<a> and prism<a> slip systems. For albite, most samples showed (001) or (010) poles aligned subnormal to the foliation. The calculated seismic anisotropies based on the lattice preferred orientation and modal compositions were in the range of 9.0–21.7% for the P-wave anisotropy and 9.6–24.2% for the maximum S-wave anisotropy. Our results indicate that the modal composition and alignment of muscovite and chlorite significantly affect the magnitude and symmetry of seismic anisotropy. It was found that the coexistence of muscovite and chlorite contributes to seismic anisotropy constructively when their [001] axes are aligned in the same direction.</p>


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 294
Author(s):  
Seokyoung Han ◽  
Haemyeong Jung

Muscovite is a major constituent mineral in the continental crust that exhibits very strong seismic anisotropy. Muscovite alignment in rocks can significantly affect the magnitude and symmetry of seismic anisotropy. In this study, deformation microstructures of muscovite-quartz phyllites from the Geumseongri Formation in Gunsan, Korea, were studied to investigate the relationship between muscovite and chlorite fabrics in strongly deformed rocks and the seismic anisotropy observed in the continental crust. The [001] axes of muscovite and chlorite were strongly aligned subnormal to the foliation, while the [100] and [010] axes were aligned subparallel to the foliation. The distribution of quartz c-axes indicates activation of the basal<a>, rhomb<a> and prism<a> slip systems. For albite, most samples showed (001) or (010) poles aligned subnormal to the foliation. The calculated seismic anisotropies based on the lattice preferred orientation and modal compositions were in the range of 9.0–21.7% for the P-wave anisotropy and 9.6–24.2% for the maximum S-wave anisotropy. Our results indicate that the modal composition and alignment of muscovite and chlorite significantly affect the magnitude and symmetry of seismic anisotropy. It was found that the coexistence of muscovite and chlorite contributes to seismic anisotropy constructively when their [001] axes are aligned in the same direction.


Nature ◽  
2005 ◽  
Vol 433 (7027) ◽  
pp. 731-733 ◽  
Author(s):  
David Mainprice ◽  
Andréa Tommasi ◽  
Hélène Couvy ◽  
Patrick Cordier ◽  
Daniel J. Frost

Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


Author(s):  
S. M. L. Sastry

Ti3Al is an ordered intermetallic compound having the DO19-type superlattice structure. The compound exhibits very limited ductility in tension below 700°C because of a pronounced planarity of slip and the absence of a sufficient number of independent slip systems. Significant differences in slip behavior in the compound as a result of differences in strain rate and mode of deformation are reported here.Figure 1 is a comparison of dislocation substructures in polycrystalline Ti3Al specimens deformed in tension, creep, and fatigue. Slip activity on both the basal and prism planes is observed for each mode of deformation. The dominant slip vector in unidirectional deformation is the a-type (b) = <1120>) (Fig. la). The dislocations are straight, occur for the most part in a screw orientation, and are arranged in planar bands. In contrast, the dislocation distribution in specimens crept at 700°C (Fig. lb) is characterized by a much reduced planarity of slip, a tangled dislocation arrangement instead of planar bands, and an increased incidence of nonbasal slip vectors.


Author(s):  
J. R. Fekete ◽  
R. Gibala

The deformation behavior of metallic materials is modified by the presence of grain boundaries. When polycrystalline materials are deformed, additional stresses over and above those externally imposed on the material are induced. These stresses result from the constraint of the grain boundaries on the deformation of incompatible grains. This incompatibility can be elastic or plastic in nature. One of the mechanisms by which these stresses can be relieved is the activation of secondary slip systems. Secondary slip systems have been shown to relieve elastic and plastic compatibility stresses. The deformation of tungsten bicrystals is interesting, due to the elastic isotropy of the material, which implies that the entire compatibility stress field will exist due to plastic incompatibility. The work described here shows TEM observations of the activation of secondary slip in tungsten bicrystals with a [110] twist boundary oriented with the plane normal parallel to the stress axis.


Author(s):  
Stuart A. Maloy

MoSi2 has recently been investigated as a potential material for high temperature structural applications. It has excellent oxidation resistance up to 1700°C, a high melting temperature, 2030°C, and a brittle-to-ductile transition temperature at 900-1000°C. WSi2 is isomorphous with MoSi2 and has a body-centered tetragonal unit cell of the space group 14/mmm. The lattice parameters are a=3.20 Å and c=7.84 Å for MoSi2 and a=3.21 Å and c=7.88 Å for WSi2. Therefore, WSi2 was added to MoSi2 to improve its strength via solid solution hardening. The purpose of this study was to investigate the slip systems in polycrystalline MoSi2/WSi2 alloys.


1981 ◽  
Vol 42 (C3) ◽  
pp. C3-73-C3-78 ◽  
Author(s):  
R. J. Keller ◽  
T. E. Mitchell ◽  
A. H. Heuer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document