The determination of the influence of heat treatment on the martensitic transformation in Cu-Zn-Al-Mn shape-memory alloy by calorimetry and acoustic emission techniques

1992 ◽  
Vol 205 ◽  
pp. 75-85 ◽  
Author(s):  
F.J. Gil ◽  
J.M. Guilemany
Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2539 ◽  
Author(s):  
Peiyou Li ◽  
Yongshan Wang ◽  
Fanying Meng ◽  
Le Cao ◽  
Zhirong He

The martensitic transformation and superelasticity of Ti49Ni51 shape memory alloy heat-treatment at different temperatures were investigated. The experimental results show that the microstructures of as-cast and heat-treated (723 K) Ni-rich Ti49Ni51 samples prepared by rapidly-solidified technology are composed of B2 TiNi phase, and Ti3Ni4 and Ti2Ni phases; the microstructures of heat-treated Ti49Ni51 samples at 773 and 823 K are composed of B2 TiNi phase, and of B2 TiNi and Ti2Ni phases, respectively. The martensitic transformation of as-cast Ti49Ni51 alloy is three-stage, A→R→M1 and R→M2 transformation during cooling, and two-stage, M→R→A transformation during heating. The transformations of the heat-treated Ti49Ni51 samples at 723 and 823 K are the A↔R↔M/A↔M transformation during cooling/heating, respectively. For the heat-treated alloy at 773 K, the transformations are the A→R/M→R→A during cooling/heating, respectively. For the heat-treated alloy at 773 K, only a small thermal hysteresis is suitable for sensor devices. The stable σmax values of 723 and 773 K heat-treated samples with a large Wd value exhibit high safety in application. The 773 and 823 K heat-treated samples have large stable strain–energy densities, and are a good superelastic alloy. The experimental data obtained provide a valuable reference for the industrial application of rapidly-solidified casting and heat-treated Ti49Ni51 alloy.


2006 ◽  
Vol 47 (3) ◽  
pp. 607-611 ◽  
Author(s):  
Stefanus Matheus Cornelis van Bohemen ◽  
Jilt Sietsma ◽  
Roumen Petrov ◽  
Marcel Joseph Marie Hermans ◽  
Ian Malcom Richardson

2012 ◽  
Vol 78 ◽  
pp. 69-74
Author(s):  
Hiroki Cho ◽  
Takaei Yamamoto ◽  
Akihiko Suzuki ◽  
Toshio Sakuma ◽  
Kiyoshi Yamauchi

It is well-known that the Ti-Ni shape memory alloy (SMA) is applicable to the medical stent. The repeated heat-treatment under the constrained strain is necessary for the manufacturing process of the laser-cut SMA stent. In this research, the effect of heat-treatment under the constrained strain on mechanical properties of the Ti-Ni shape memory alloy wire was investigated. The applied strain at single heat-treatment (εap) was 4, 5 and 8%, and the heat-treatment is repeated so as to became total applied strain 40%. In the case of εap=4 and 5%, partial transformation occurs in the SMA wire, and so a necking appears in the SMA wire. Due to this necking, multi-step martensitic transformation, and decreasing of breaking strength / breaking strain are caused. The necking does not occur because the whole of the SMA wire is transformed for εap=8%. The mechanical properties are improved by increasing of εap. Nevertheless, the mechanical properties of each sample are inappropriate for the medical stent. However, the mechanical properties of the as-manufactured sample are improved greatly by training. In addition, it is desirable that the applied strain during training is slightly larger than the requested strain for application.


2016 ◽  
Vol 879 ◽  
pp. 256-261 ◽  
Author(s):  
Taywin Buasri ◽  
Hyun Bo Shim ◽  
Masaki Tahara ◽  
Tomonari Inamura ◽  
Kenji Goto ◽  
...  

Phase constitution and martensitic transformation behavior were investigated for a Au–51Ti–18Co alloy heat-treated at 1173 K to 1373 K for 3.6 ks. The Au–51Ti–18Co alloy was fabricated by Ar arc-melting technique and subsequently by hot-forging at 1423 K for 10.8 ks. X-ray diffraction analysis revealed that B2 parent phase, B19 martensite phase and AuTi3 simultaneously appeared regardless of the heat-treatment temperatures. By increasing the heat-treatment temperature, the volume fraction of AuTi3 was slightly reduced. Besides, the lattice transformation strain which was calculated from the precisely-determined lattice parameters was evaluated to be 7 % in the Au–51Ti–18Co alloy in all the heat-treated conditions. This value is comparable to that of NiTi practical alloys. From differential scanning calorimetry (DSC) analysis, reverse martensitic transformation temperature was slightly increased with the heat-treatment temperature. From the lattice transformation strain point of views, the Au–51Ti–18Co has a large potential for novel biomedical shape memory alloy.


Sign in / Sign up

Export Citation Format

Share Document