scholarly journals Effect of Heat Treatment on the Structural Properties and Martensitic Transformation of Ni-26.5at. %Ta High Temperature Shape Memory Alloy

2020 ◽  
Vol 33 (2) ◽  
pp. 541-546
Author(s):  
Köksal YILDIZ
2010 ◽  
Vol 654-656 ◽  
pp. 2095-2098
Author(s):  
Yun Qing Ma ◽  
Shui Yuan Yang ◽  
San Li Lai ◽  
Shi Wen Tian ◽  
Cui Ping Wang ◽  
...  

The rare earth element Gd is added to Ni53Mn22Co6Ga19 high-temperature shape memory alloy to refine the grain size and adjust the distribution of γ phase, and their microstructure, martensitic transformation behaviors, mechanical and shape memory properties were investigated. The results show that the grain size is obviously decreased and the γ phase tends to segregate at grain boundaries with increasing Gd content. Small amounts of Gd-rich phase were formed with 0.1 at.% Gd addition. The martensitic transformation temperature abruptly increases with 0.1 at.% Gd addition, then almost keeps constant with further increasing Gd content. The addition of 0.1 at.% Gd is proved to be beneficial to both tensile stress and strain before fracture, but negative to the shape-memory effect.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2539 ◽  
Author(s):  
Peiyou Li ◽  
Yongshan Wang ◽  
Fanying Meng ◽  
Le Cao ◽  
Zhirong He

The martensitic transformation and superelasticity of Ti49Ni51 shape memory alloy heat-treatment at different temperatures were investigated. The experimental results show that the microstructures of as-cast and heat-treated (723 K) Ni-rich Ti49Ni51 samples prepared by rapidly-solidified technology are composed of B2 TiNi phase, and Ti3Ni4 and Ti2Ni phases; the microstructures of heat-treated Ti49Ni51 samples at 773 and 823 K are composed of B2 TiNi phase, and of B2 TiNi and Ti2Ni phases, respectively. The martensitic transformation of as-cast Ti49Ni51 alloy is three-stage, A→R→M1 and R→M2 transformation during cooling, and two-stage, M→R→A transformation during heating. The transformations of the heat-treated Ti49Ni51 samples at 723 and 823 K are the A↔R↔M/A↔M transformation during cooling/heating, respectively. For the heat-treated alloy at 773 K, the transformations are the A→R/M→R→A during cooling/heating, respectively. For the heat-treated alloy at 773 K, only a small thermal hysteresis is suitable for sensor devices. The stable σmax values of 723 and 773 K heat-treated samples with a large Wd value exhibit high safety in application. The 773 and 823 K heat-treated samples have large stable strain–energy densities, and are a good superelastic alloy. The experimental data obtained provide a valuable reference for the industrial application of rapidly-solidified casting and heat-treated Ti49Ni51 alloy.


2015 ◽  
Vol 61 ◽  
pp. 42-46 ◽  
Author(s):  
Jingmin Wang ◽  
Yongjun Han ◽  
Hui Hua ◽  
Xiao Wang ◽  
Chengbao Jiang

2008 ◽  
Vol 138 ◽  
pp. 399-406 ◽  
Author(s):  
Xiang Long Meng ◽  
Yu Dong Fu ◽  
Wei Cai ◽  
J.X. Zhang ◽  
Qing Fen Li ◽  
...  

The martensitic transformation behavior and shape memory effect (SME) have been investigated in a Ni-rich Ti29.6Ni50.4Hf20 high temperature shape memory alloy (SMA) in the present study. After aging, the transformation temperatures of Ti29.6Ni50.4Hf20 alloy increase obviously due to the precipitation of (Ti,Hf)3Ni4 particles. And the transformation sequence changes from one-step to two-step. When the experimental alloy is aged at different temperatures for 2h, the transformation temperatures increase rapidly with increasing the aging temperature and then change slightly with further increasing the aging temperature. Most of the martensite variants preferentially oriented in the aged Ti29.6Ni50.4Hf20 alloy. The aged Ti29.6Ni50.4Hf20 alloy shows the better thermal stability of transformation temperatures than the solution-treated one because the precipitates depress the introduction of defects during thermal cycling. In addition, the proper aged Ti29.6Ni50.4Hf20 alloy also shows the larger SME than the solution-treated one since the precipitates strengthen the matrix strongly.


2006 ◽  
Vol 503-504 ◽  
pp. 1013-0 ◽  
Author(s):  
Chao Ying Xie ◽  
Z.G. Fan ◽  
Z.H. Li ◽  
G.Q. Xiang ◽  
X.H. Cheng

Microstructures and transformation behavior of TiNi shape memory alloy after high temperature ECAE process have been investigated. It is found that the initial coarse grains were refined after high temperature ECAE processes and short annealing at 750°C. Transformation temperatures of TiNi alloy sharply decreased after two ECAE processes, rose obviously when annealed at 750°C for 5min, and quickly rose back after annealing at 500°C for 2 hours. Reasons for phase transformation behavior changes have been discussed.


Sign in / Sign up

Export Citation Format

Share Document