The behaviour of air-plasma-sprayed zirconia in high temperature reactor helium

1982 ◽  
Vol 95 (3) ◽  
pp. 245-254 ◽  
Author(s):  
A.R. Nicoll ◽  
W. Kleemann ◽  
R. Engel
Author(s):  
P Subramani ◽  
M Sathishkumar ◽  
M Manikandan ◽  
S Senthil Kumaran ◽  
V Sreenivasulu ◽  
...  

Abstract Thermal barrier coating plays a vital role in protecting materials' surfaces from high-temperature environment conditions. This work compares the demeanour of uncoated and air plasma sprayed Cr3C2-25NiCr and NiCrMoNb coated X8CrNiMoVNb16-13 substrates subjected to air oxidation and molten salt (Na2SO4 + 60%V2O5) environment condition at 900°C for 50 cycles. Coating characteristics have been analyzed through microstructure, thickness, porosity, hardness, and bond strength. SEM, EDS and XRD analysis were used to analyze corrosion's product at the end of the 50th cycle. Coating microstructures showed a uniform laminar structure that is adherent and denser with a coating thickness of 150 ± 20 μm and porosity less than 3.5%. The Microhardness of both the coated substrates were higher than that of the bare substrate. Cr3C2-25NiCr and NiCrMoNb coating bond strength was 38.9 MPa and 42.5 MPa. Thermogravimetric analysis showed the parabolic rate law of oxidation for all the substrates in both environments. In the molten salt environment, all the substrates exhibited higher weight gain compared to the air oxidation environment. In both environmental conditions, the uncoated X8CrNiMoVNb16-13 alloy exhibited higher weight gain than the coated substrates. The formation of Cr2O3, NiO and spinel oxide NiCr2O4 offers good resistance to corrosion to all the substrates in both the environmental condition. However, the presence of Mo and Nb significantly accelerated the corrosion of the substrate, thereby increasing the weight of the NiCrMoNb substrate. It is observed that Cr3C2-25NiCr and NiCrMoNb coating over the X8CrNiMoVNb16-13 substrate significantly protected the substrate against the hot corrosion than the bare alloy exposed to similar environmental conditions.


2011 ◽  
Vol 59 (5) ◽  
pp. 2241 ◽  
Author(s):  
Julie M. Drexler ◽  
Kentaro Shinoda ◽  
Angel L. Ortiz ◽  
Dongsheng Li ◽  
Alexander L. Vasiliev ◽  
...  

1984 ◽  
Vol 119 (3) ◽  
pp. 317-325 ◽  
Author(s):  
A.R. Nicoll ◽  
H. Demus ◽  
R. Engel

2010 ◽  
Vol 58 (20) ◽  
pp. 6835-6844 ◽  
Author(s):  
Julie M. Drexler ◽  
Kentaro Shinoda ◽  
Angel L. Ortiz ◽  
Dongsheng Li ◽  
Alexander L. Vasiliev ◽  
...  

2007 ◽  
pp. 50-57
Author(s):  
Maria Samaras ◽  
Wolfgang Hoffelner ◽  
Chu Chun Fu ◽  
Michel Guttmann ◽  
Roger E. Stoller

2018 ◽  
Vol 18 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Mohammed J Kadhim ◽  
Mohammed H Hafiz ◽  
Maryam A Ali Bash

The high temperature corrosion behavior of thermal barrier coating (TBC) systemconsisting of IN-738 LC superalloy substrate, air plasma sprayed Ni24.5Cr6Al0.4Y (wt%)bond coat and air plasma sprayed ZrO2-20 wt% ceria-3.6 wt% yttria (CYSZ) ceramic coatwere characterized. The upper surfaces of CYSZ covered with 30 mg/cm2 , mixed 45 wt%Na2SO4-55 wt% V2O5 salt were exposed at different temperatures from 800 to 1000 oC andinteraction times from 1 up to 8 h. The upper surface plan view of the coatings wereidentified for topography, roughness, chemical composition, phases and reaction productsusing scanning electron microscopy, energy dispersive spectroscopy, talysurf, and X-raydiffraction. XRD analyses of the plasma sprayed coatings after hot corrosion confirmed thephase transformation of nontransformable tetragonal (t') into monoclinic phase, presence ofYVO4 and CeVO4 products. Analysis of the hot corrosion CYSZ coating confirmed theformation of high volume fraction of YVO4, with low volume fractions of CeOV4 and CeO2.The formation of these compounds were combined with formation of monoclinic phase (m)from transformation of nontransformable tetragonal phase (t').


Sign in / Sign up

Export Citation Format

Share Document