Physical and electrical characterization of in situ boron-doped single-crystal silicon films grown at 450°C using remote plasma-enhanced chemical vapor deposition

1992 ◽  
Vol 207 (1-2) ◽  
pp. 12-14
Author(s):  
B. Anthony ◽  
T. Hsu ◽  
R. Qian ◽  
J. Irby ◽  
D. Kinosky ◽  
...  
2004 ◽  
Vol T114 ◽  
pp. 31-33
Author(s):  
J Hållstedt ◽  
A Parent ◽  
S-L Zhang ◽  
M Östling ◽  
H H Radamson

1993 ◽  
Vol 303 ◽  
Author(s):  
Xiaowei Ren ◽  
Mehmet C. Öztürk ◽  
Douglas T. Grider ◽  
Mahesh Sanganeria ◽  
Stanton Ashburn

ABSTRACTIn this paper, we report electrical characterization of raised source/drain MOS transistors fabricated using selectively deposited, in-situ boron doped SixGe1-x as a solid diffusion source to form the source/drain junctions. The alloy can be deposited with an enhanced selectivity at temperatures as low as 600°C resulting in an abrupt doping profile at the SixGe1-x/Si interface. After deposition, junctions are formed by diffusion of boron from the deposited layer into the silicon substrate. The selectively deposited alloy can serve as a sacrificial layer for self-aligned silicide formation elimintaing the problem of silicon consumption in the substrate. In this work, selective depositions were performed in a typical cold-walled, lamp heated rapid thermal chemical vapor deposition (RTCVD) system at ∼ 610 °C using SiH2C12, GeH4 and B2H6 as the reactive gases. Using this process, MOS transistors with effective channel lengths down to 0.45 gtm were successfully fabricated.


1989 ◽  
Vol 146 ◽  
Author(s):  
J.L. Crowley ◽  
J.C. Liao ◽  
P.H. Kleins ◽  
G.J. Campisi

ABSTRACTThe deposition of beta Silicon Carbide unto single crystal silicon (100) wafers using rapid thermal chemical vapor deposition (RTCVD) has been carried out using silane and ethylene as the source gases. Deposition temperatures were varid from 1100°C to 1300°C. Auger analysis revealed the silicon carbide films to be stoichiometric at all temperatures. Infrared spectroscopy data taken between 1200 cm−1 and 60° Cm−1 show the appearance of the longitudinal optical phonon at 974 cm−1 and the transverse optical phonon at 794 cm−1 in samples deposited at 1200°C and above. Stress in the films deposited on the single crystal silicon substrates is seen to go from zero or slightly compressive at 11O0°C to strongly tensile at 1300°C.


Sign in / Sign up

Export Citation Format

Share Document