A small open reading frame in pseudorabies virus and implications for evolutionary relationships between herpesviruses

Virology ◽  
1987 ◽  
Vol 159 (1) ◽  
pp. 193-195 ◽  
Author(s):  
Erik A. Petrovskis ◽  
Leonard E. Post
2002 ◽  
Vol 184 (1) ◽  
pp. 51-58 ◽  
Author(s):  
E. Suzanne Paterson ◽  
Sherri E. Boucher ◽  
I. B. Lambert

ABSTRACT In Escherichia coli, the response to oxidative stress due to elevated levels of superoxide is mediated, in part, by the soxRS regulon. One member of the soxRS regulon, nfsA, encodes the major oxygen-insensitive nitroreductase in Escherichia coli which catalyzes the reduction of nitroaromatic and nitroheterocyclic compounds by NADPH. In this study we investigate the regulation of nfsA in response to the superoxide generating compound paraquat. The transcription start site (TSS) of nfsA was located upstream of the ybjC gene, a small open reading frame of unknown function located directly upstream of nfsA, suggesting that these two genes form an operon. The activity of the promoter associated with this TSS was confirmed with lacZ fusions and was shown to be inducible by paraquat. Footprinting and band shift analysis showed that purified His-tagged SoxS protein binds to a 20-base sequence 10 bases upstream of the −35 promoter sequence in the forward orientation, suggesting that the ybjC-nfsA promoter is a class I SoxS-dependent promoter.


2012 ◽  
Vol 42 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Lucas M. Ferreri ◽  
Kelly A. Brayton ◽  
Kerry S. Sondgeroth ◽  
Audrey O.T. Lau ◽  
Carlos E. Suarez ◽  
...  

2021 ◽  
Vol 12 (4) ◽  
pp. 753-764
Author(s):  
Frederick Kibenge ◽  
Ashley McKibbon ◽  
Molly Kibenge ◽  
Yingwei Wang

Genome sequence analysis of Atlantic salmon bafinivirus (ASBV) revealed a small open reading frame (ORF) predicted to encode a Type I membrane protein with an N-terminal cleaved signal sequence (110 aa), likely an envelope (E) protein. Bioinformatic analyses showed that the predicted protein is strikingly similar to the coronavirus E protein in structure. This is the first report to identify a putative E protein ORF in the genome of members of the Oncotshavirus genus (subfamily Piscavirinae, family Tobaniviridae, order Nidovirales) and, if expressed would be the third family (after Coronaviridae and Arteriviridae) within the order to have the E protein as a major structural protein.


2016 ◽  
Vol 88 (7) ◽  
pp. 3967-3975 ◽  
Author(s):  
Jiao Ma ◽  
Jolene K. Diedrich ◽  
Irwin Jungreis ◽  
Cynthia Donaldson ◽  
Joan Vaughan ◽  
...  

2002 ◽  
Vol 76 (6) ◽  
pp. 3065-3071 ◽  
Author(s):  
Barbara G. Klupp ◽  
Walter Fuchs ◽  
Harald Granzow ◽  
Ralf Nixdorf ◽  
Thomas C. Mettenleiter

ABSTRACT The UL36 open reading frame encoding the tegument protein ICP1/2 represents the largest open reading frame in the genome of herpes simplex virus type 1 (HSV-1). Polypeptides homologous to the HSV-1 UL36 protein are present in all subfamilies of Herpesviridae. We sequenced the UL36 gene of the alphaherpesvirus pseudorabies virus (PrV) and prepared a monospecific polyclonal rabbit antiserum against a bacterial glutathione S-transferase (GST)-UL36 fusion protein for identification of the protein. The antiserum detected a >300-kDa protein in PrV-infected cells and in purified virions. Interestingly, in coprecipitation analyses using radiolabeled infected-cell extracts, the anti-UL36 serum reproducibly coprecipitated the UL37 tegument protein, and antiserum directed against the UL37 protein coprecipitated the UL36 protein. This physical interaction could be verified using yeast two-hybrid analysis which demonstrated that the UL37 protein interacts with a defined region within the amino-terminal part of the UL36 protein. By use of immunogold labeling, capsids which accumulate in the cytoplasm in the absence of the UL37 protein (B. G. Klupp, H. Granzow, E. Mundt, and T. C. Mettenleiter, J. Virol. 75:8927-8936, 2001) as well as wild-type intracytoplasmic and extracellular virions were decorated by the anti-UL36 antiserum, whereas perinuclear primary enveloped virions were not. We postulate that the physical interaction of the UL36 protein, which presumably constitutes the innermost layer of the tegument (Z. Zhou, D. Chen, J. Jakana, F. J. Rixon, and W. Chiu, J. Virol. 73:3210-3218, 1999), with the UL37 protein is an important early step in tegumentation during virion morphogenesis in the cytoplasm.


Genetics ◽  
1990 ◽  
Vol 125 (2) ◽  
pp. 237-248
Author(s):  
P Daegelen ◽  
E Brody

Abstract We have determined the DNA sequence of the rIIA gene and have discovered a small open reading frame, rIIA.1, between genes 60 and rIIA. The predicted molecular weights of these proteins are 82,840 for rIIA and 8,124 for rIIA.1. The rIIA protein has a repeated motif which suggests that the gene has evolved by duplication. It also has a motif which suggests that it belongs to a group of ompR-like proteins that control regulation of gene expression in response to changes in the external environment. We have sequenced three different missense mutants whose mutations lie in the Ala segment of the rIIA genetic map. All three changes are found within the first 35 bp of the rIIA coding sequence. The region of control of protein synthesis is identical in the rIIA gene and in gene 44 of T4. We relate this finding to the high sensitivity of both RNAs to translational repression by the T4 regA gene product.


Yeast ◽  
1993 ◽  
Vol 9 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Francesco Di Blasi ◽  
Elena Carra ◽  
Emmanuele De Vendittis ◽  
Pietro Masturzo ◽  
Emanuele Burderi ◽  
...  

2019 ◽  
Vol 15 (2) ◽  
pp. 108-116 ◽  
Author(s):  
Alexandra Khitun ◽  
Travis J. Ness ◽  
Sarah A. Slavoff

Increasing evidence suggests that some small open reading frame-encoded polypeptides (SEPs) function in prokaryotic and eukaryotic cellular stress responses.


Sign in / Sign up

Export Citation Format

Share Document