Host age and cell type influence measles virus protein expression in the central nervous system

Virology ◽  
1989 ◽  
Vol 170 (1) ◽  
pp. 131-138 ◽  
Author(s):  
Peggy T. Swoveland ◽  
Kenneth P. Johnson
2021 ◽  
Vol 22 (4) ◽  
pp. 1587
Author(s):  
Nuri Song ◽  
Da Yeon Jeong ◽  
Thai Hien Tu ◽  
Byong Seo Park ◽  
Hye Rim Yang ◽  
...  

Adiponectin, an adipose tissue-derived hormone, plays integral roles in lipid and glucose metabolism in peripheral tissues, such as the skeletal muscle, adipose tissue, and liver. Moreover, it has also been shown to have an impact on metabolic processes in the central nervous system. Astrocytes comprise the most abundant cell type in the central nervous system and actively participate in metabolic processes between blood vessels and neurons. However, the ability of adiponectin to control nutrient metabolism in astrocytes has not yet been fully elucidated. In this study, we investigated the effects of adiponectin on multiple metabolic processes in hypothalamic astrocytes. Adiponectin enhanced glucose uptake, glycolytic processes and fatty acid oxidation in cultured primary hypothalamic astrocytes. In line with these findings, we also found that adiponectin treatment effectively enhanced synthesis and release of monocarboxylates. Overall, these data suggested that adiponectin triggers catabolic processes in astrocytes, thereby enhancing nutrient availability in the hypothalamus.


1998 ◽  
Vol 96 (6) ◽  
pp. 637-642 ◽  
Author(s):  
S. McQuaid ◽  
S. L. Cosby ◽  
K. Koffi ◽  
M. Honde ◽  
J. Kirk ◽  
...  

1981 ◽  
Vol 144 (2) ◽  
pp. 154-160 ◽  
Author(s):  
A. T. Haase ◽  
P. Swoveland ◽  
L. Stowring ◽  
P. Ventura ◽  
K. P. Johnson ◽  
...  

1994 ◽  
Vol 88 (6) ◽  
pp. 520-526 ◽  
Author(s):  
Satoshi Nakasu ◽  
Yoko Nakasu ◽  
Hirofumi Nioka ◽  
Masayuki Nakajima ◽  
Jyoji Handa

2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Jeremy Charles Welsch ◽  
Benjamin Charvet ◽  
Sebastien Dussurgey ◽  
Omran Allatif ◽  
Noemie Aurine ◽  
...  

ABSTRACTFatal neurological syndromes can occur after measles virus (MeV) infection of the brain. The mechanisms controlling MeV spread within the central nervous system (CNS) remain poorly understood. We analyzed the role of type I interferon (IFN-I) receptor (IFNAR) signaling in the control of MeV infection in a murine model of brain infection. Using organotypic brain cultures (OBC) from wild-type and IFNAR-knockout (IFNARKO) transgenic mice ubiquitously expressing the human SLAM (CD150) receptor, the heterogeneity of the permissiveness of different CNS cell types to MeV infection was characterized. In the absence of IFNAR signaling, MeV propagated significantly better in explant slices. In OBC from IFNAR-competent mice, while astrocytes and microglia were infected on the day of explant preparation, they became refractory to infection with time, in contrast to neurons and oligodendrocytes, which remained permissive to infection. This selective loss of permissiveness to MeV infection was not observed in IFNARKOmouse OBC. Accordingly, the development of astrogliosis related to the OBC procedure was exacerbated in the presence of IFNAR signaling. In the hippocampus, this astrogliosis was characterized by a change in the astrocyte phenotype and by an increase of IFN-I transcripts. A proteome analysis showed the upregulation of 84 out of 111 secreted proteins. In the absence of IFNAR, only 27 secreted proteins were upregulated, and none of these were associated with antiviral activities. Our results highlight the essential role of the IFN-I response in astrogliosis and in the permissiveness of astrocytes and microglia that could control MeV propagation throughout the CNS.IMPORTANCEMeasles virus (MeV) can infect the central nervous system (CNS), with dramatic consequences. The mechanisms controlling MeV invasion of the CNS remain ill-defined since most previous data were obtained from postmortem analysis. Here, we highlight for the first time the crucial role of the type I interferon (IFN-I) response not only in the control of CNS invasion but also in the early permissiveness of glial cells to measles virus infection.


Sign in / Sign up

Export Citation Format

Share Document